Quantum Cryptanalysis: Let's build a quantum computer

Gustavo Banegas¹

February 9, 2021

¹INRIA & LIX - École polytechnique, France gustavo@cryptme.in

Outline

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms Grover's algorithm Shor's algorithm

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms Grover's algorithm Shor's algorithm

Why study post-quantum cryptography?

"Somebody announces that he's built a large quantum computer. RSA is dead. DSA is dead. Elliptic curves, hyperelliptic curves, class groups, whatever, dead, dead, dead."(Bernstein, 2005)

In other words..

Copyright ∋ 1997 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

There is already an alternative

1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006 1st International Workshop on Post-Quantum Cryptography;

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006 1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008 2nd International Workshop on Post-Quantum Cryptography... and goes on;

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006 1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008 2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 EU publishes H2020 call including post-quantum crypto as topic;

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006 1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008 2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 EU publishes H2020 call including post-quantum crypto as topic;
- 2015 NSA admits that the world needs post-quantum crypto;

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006 1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008 2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 EU publishes H2020 call including post-quantum crypto as topic;
- 2015 NSA admits that the world needs post-quantum crypto;
- 2016 NIST calls for submissions to "Post-Quantum Cryptography Standardization Project".
- 2019 NIST receives 69 proper submissions;

- 1994 Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 Grover presents "Quantum search algorithm for unoreded database";
- 2003 Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006 1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008 2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 EU publishes H2020 call including post-quantum crypto as topic;
- 2015 NSA admits that the world needs post-quantum crypto;
- 2016 NIST calls for submissions to "Post-Quantum Cryptography Standardization Project".
- 2019 NIST receives 69 proper submissions;
- ▶ 2020 NIST is going to the 3rd round.

Introduction

How a quantum computer works?

 It perform computations based on probabilities of an object's state before it is measured;

Introduction

How a quantum computer works?

- It perform computations based on probabilities of an object's state before it is measured;
- We can change the probabilities of a state;

Introduction

How a quantum computer works?

- It perform computations based on probabilities of an object's state before it is measured;
- We can change the probabilities of a state;

Ok! How can we use a quantum computer?

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms Grover's algorithm Shor's algorithm

Quantum Computation - qubits

Classical bit vs Qubit

 $|0
angle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} |1
angle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\alpha \left| \mathbf{0} \right\rangle + \beta \left| \mathbf{1} \right\rangle,$ $|\alpha|^2 + |\beta|^2 = 1$

.

Classical Bit

Qubit

Measure quantum state

WWW.MARYDEATHCOMICS.COM

©2014 MATTHEW TARPLEY

Measuring collapses the state.

Quantum gates

Identity gate: $|a\rangle - 1 - |a\rangle$ NOT gate: $|a\rangle - NOT - |1 - a\rangle$ CNOT gate: $|a\rangle - |a\rangle$ $|b\rangle - |a \oplus b\rangle$ Hadamard Gate: $\bullet \ H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $|b\rangle - H - \frac{(|0\rangle + (-1)^{b}|1\rangle)}{\sqrt{2}}$ $|b\rangle -H - H - |b\rangle$ Toffoli gate: $|a\rangle \rightarrow |a\rangle$ $|b\rangle \rightarrow |b\rangle$ $|c\rangle \rightarrow |ab \oplus c\rangle$

n-Qubit system

Definition

 $|\psi
angle\in\mathbb{C}^{2}$ such that $||\left|\psi
ight
angle\left||=1$,

$$|\psi\rangle = \sum_{x \in \{0,1\}^n} \alpha_x |x\rangle$$

where

$$\sum_{x \in \{0,1\}^n} |\alpha_x|^2 = 1.$$

Example 2-qubit system

- ► 4 basis states: $|0\rangle \otimes |0\rangle$, $|0\rangle \otimes |1\rangle$, $|1\rangle \otimes |0\rangle$, $|1\rangle \otimes |1\rangle$.
- It is common to use just: $|0\rangle |1\rangle, |10\rangle$

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms Grover's algorithm Shor's algorithm

Deutsch-Jozsa problem

▶ Input: $f : \{0,1\}^n \to \{0,1\}$ either constant or balanced

- Output: 0 iff f is constant
- Constrains: f is a black box

For n = 1 we have that If f(0) = 0 and f(1) = 1 or f(0) = 1 and f(1) = 0 the function is balanced.

If f(0) = 0 and f(1) = 0 or f(0) = 1 and f(1) = 1 the function is constant.

Query complexity

• Deterministic: $2^{n-1} + 1$

Deutsch-Jozsa problem

▶ Input: $f : \{0,1\}^n \to \{0,1\}$ either constant or balanced

- Output: 0 iff f is constant
- Constrains: f is a black box

For n = 1 we have that If f(0) = 0 and f(1) = 1 or f(0) = 1 and f(1) = 0 the function is balanced.

If f(0) = 0 and f(1) = 0 or f(0) = 1 and f(1) = 1 the function is constant.

Query complexity

- Deterministic: $2^{n-1} + 1$
- Quantum: 1

Deutsch-Jozsa quantum circuit Simple quantum circuit:

$$\ket{b} - \underbrace{S_f} - (-1)^{f(b)} \ket{b}$$

Deutsch-Jozsa quantum circuit Simple quantum circuit:

$$|b\rangle - \underline{S_f} - (-1)^{f(b)} |b\rangle$$
$$|b\rangle - \underline{H} - \underline{S_f} - \underline{H} - ?$$

$|0\rangle -H - S_f - H - ?$

lnitialization: $|0\rangle$.

$$|0\rangle - H - S_f - H - ?$$

$$|0\rangle - H - S_f - H - ?$$

$$|0\rangle - H - S_f - H - ?$$

Initialization: |0⟩.
Parallelization: ¹/_{√2}(|0⟩ + |1⟩).
Query: ¹/_{√2}((-1)^{f(0)} |0⟩ + (-1)^{f(1)} |1⟩).
Interferences: ¹/₂((-1)^{f(0)}(|0⟩ + |1⟩) + (-1)^{f(1)}(|0⟩ - |1⟩)).

$$|0\rangle -H - S_f - H - ?$$

- Initialization: |0>.
- Parallelization: $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$.
- Query: $\frac{1}{\sqrt{2}}((-1)^{f(0)}|0\rangle + (-1)^{f(1)}|1\rangle).$
- ▶ Interferences: $\frac{1}{2}((-1)^{f(0)}(|0\rangle + |1\rangle) + (-1)^{f(1)}(|0\rangle |1\rangle)).$

Final State:

$$\frac{1}{2}(((-1)^{f(0)} + (-1)^{f(1)}) |0\rangle + ((-1)^{f(0)} - (-1)^{f(1)}) |1\rangle).$$

It is easy to expand for *n*-qubits.

Deutsch-Jozsa analysis

If
$$f(0) = 0$$
 and $f(1) = 1$ or
 $f(0) = 1$ and $f(1) = 0$
The function is balanced. In our
quantum system we will end up
with:

$$rac{1}{2}((0)\left|0
ight
angle+(2)\left|1
ight
angle)$$

or

$$\frac{1}{2}((0)\left|0\right\rangle + (-2)\left|1\right\rangle)$$

If f(0) = 0 and f(1) = 0 or f(0) = 1 and f(1) = 1The function is constant. In our quantum system we will end up with:

$$\frac{1}{2}((2)\left|0\right\rangle + (0)\left|1\right\rangle)$$

or

$$\frac{1}{2}((-2)\left|0\right\rangle + (0)\left|1\right\rangle)$$

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms Grover's algorithm Shor's algorithm
Grover's algorithm in a nutshell

 Originally described as search of an element in an unoreded database.

Grover's algorithm in a nutshell

 Originally described as search of an element in an unoreded database.

• Needs $O(\sqrt{N})$ queries in database of size $N = 2^n$ elements.

Grover's algorithm in a nutshell

```
\begin{array}{l} \displaystyle \frac{\operatorname{Grover}(f,t):}{1. \; \operatorname{Start} \; \operatorname{with} \; |\phi_0\rangle = |1^n\rangle} \\ \displaystyle 2. \; \operatorname{Apply} \; \mathbf{H}^{\otimes n} \\ \displaystyle 3. \; \operatorname{Repeat} \; O\left(\sqrt{2^n}\right) \; \operatorname{times} \\ \displaystyle 4. \quad \operatorname{Query} \; \operatorname{to} \; \operatorname{oracle} \; \mathcal{O}_f \\ \displaystyle 5. \quad \operatorname{Amplification}; \\ \displaystyle 6. \; \operatorname{Return} \; x = |\phi\rangle \; \operatorname{with} \; f(x) = 1. \end{array}
```

Grover's algorithm in a nutshell

Ok! Can we use Grover's algorithm?

Preimage search

Security of a hash function

Given a hash-function H. The following three security properties should hold:

- Collision resistance: It is computationally infeasible to find any two distinct inputs x, x' which hash to the same output, i.e., such that H(x) = H(x').
- Preimage resistance: It is computationally infeasible to find any preimage x' such that H(x') = y when given any image y.
- ➤ 2nd preimage resistance: It is computationally infeasible to find any second input which has the same output as any specified input, i.e., given x, to find a 2nd-preimage x' ≠ x such that H(x) = H(x').

Pre-quantum preimage search

Threat to AES

van Oorschot-Wiener "parallel rho method".

- ► Uses a mesh of *p* small processors.
- Each running 2¹²⁸/pt fast steps, to find one of t independent AES keys k₁,..., k_t, using a fixed plaintext, e.g, AES(0).

NIST has claimed that AES-128 is secure enough.

"Grover's algorithm requires a long-running serial computation, which is difficult to implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic."

Introduction - Parallel rho method

Distinguish Point

Consider $H : \{0,1\}^b \to \{0,1\}^b$ Take x an input of H, x' = H(x). Thereafter, take x' and apply H again, x'' = H(x'). It is possible to do it n times (H^n) , until a given condition is satified. In our case, we want the first 0 < d < b/2 bits as 0. $H^n_d(x)$ means d bits of x, computed n times.

$$H_d^n(x) = \underbrace{0\ldots 0}_{d \text{ zeros}} \{0,1\}^{b/2}$$

Introduction - Parallel rho method

Distinguish Point

Results in pre and post-quantum preimage search

Grover's algorithm to find a preimage

Grover's algorithm to find a preimage

- Design AES as a quantum circuit.
- Design a quantum circuit for Grover's algorithm that uses the AES quantum circuit.
- Put the previous circuits in p processors using t keys.
- Quantum computer work in a way that requires all algorithms to be reversible.
 - We need an reversible AES circuit to run with Grover's algorithm

Grover's algorithm to find a preimage

Grover's algorithm to find a preimage

- Design AES as a quantum circuit.
- Design a quantum circuit for Grover's algorithm that uses the AES quantum circuit.
- Put the previous circuits in p processors using t keys.
- Quantum computer work in a way that requires all algorithms to be reversible.
 - We need an reversible AES circuit to run with Grover's algorithm
- ▶ We need to have low memory/resources.

Trade-off from Bennett–Tompa Example to compute $H^4(x)$:

Trade-off from Bennett–Tompa Example to compute $H^4(x)$:

time 0: x 0 0 0 0

Trade-off from Bennett-Tompa

time 0:	X	0	0	0	0
time 1:	x	0	H(x)	0	0

Trade-off from Bennett-Tompa

time 0:	x	0	0	0	0
time 1:	x	0	H(x)	0	0
time 2:	x	0	H(x)	$H^2(x)$	0

Trade-off from Bennett-Tompa

time 0:	X	0	0	0	0
time 1:	x	0	H(x)	0	0
time 2:	x	0	H(x)	$H^2(x)$	0
time 3:	x	0	H(x)	$H^2(x)$	$H^3(x)$

Trade-off from Bennett-Tompa

time 0:	X	0	0	0	0
time 1:	X	0	H(x)	0	0
time 2:	x	0	H(x)	$H^2(x)$	0
time 3:	X	0	H(x)	$H^2(x)$	$H^3(x)$
time 4:	X	$H^4(x)$	H(x)	$H^2(x)$	$H^{3}(x)$

Trade-off from Bennett-Tompa

time 0:	x	0	0	0	0
time 1:	x	0	H(x)	0	0
time 2:	x	0	H(x)	$H^2(x)$	0
time 3:	x	0	H(x)	$H^2(x)$	$H^3(x)$
time 4:	x	$H^4(x)$	H(x)	$H^2(x)$	$H^3(x)$
time 5:	X	$H^4(x)$	H(x)	$H^2(x)$	0

Trade-off from Bennett-Tompa

time 0:	X	0	0	0	0
time 1:	X	0	H(x)	0	0
time 2:	X	0	H(x)	$H^2(x)$	0
time 3:	X	0	H(x)	$H^2(x)$	$H^3(x)$
time 4:	x	$H^4(x)$	H(x)	$H^2(x)$	$H^3(x)$
time 5:	X	$H^4(x)$	H(x)	$H^2(x)$	0
time 6:	x	$H^4(x)$	H(x)	0	0

Trade-off from Bennett-Tompa

time 0:	X	0	0	0	0
time 1:	X	0	H(x)	0	0
time 2:	X	0	H(x)	$H^2(x)$	0
time 3:	X	0	H(x)	$H^2(x)$	$H^3(x)$
time 4:	x	$H^4(x)$	H(x)	$H^2(x)$	$H^3(x)$
time 5:	X	$H^4(x)$	H(x)	$H^2(x)$	0
time 6:	X	$H^4(x)$	H(x)	0	0
time 7:	X	$H^4(x)$	0	0	0

 $H^n_d(y_i) \stackrel{\scriptscriptstyle ?}{=} H^n_d(x_i)$

Low-communication parallel quantum multi-target preimage search

Gustavo Banegas & Daniel J. Bernstein

- Bennett-Tompa technique to build a reversible circuit for distinguished points.
- Possible to achieve using low communication costs and no memory.

Result:

Cet's go shopping

Factoring Integers with Shor's algorithm

Let's go shopping

 Develop by Peter Shor in 1994;

Let's go shopping

- Develop by Peter Shor in 1994;
- Brings apocalypse to cryptography;

Let's go shopping

- Develop by Peter Shor in 1994;
 - Brings apocalypse to cryptography;
- It breaks RSA, ECDSA and DSA;

Let's go shopping

- Develop by Peter Shor in 1994;
- Brings apocalypse to cryptography;
- It breaks RSA, ECDSA and DSA;
- How many qubits and gates do we need to run Shor's algorithm?

Shor's algorithm

In summary Shor's algorithm has two parts:

 A reduction of the factoring problem to the problem of order-finding, which can be done on a classical computer;

Shor's algorithm

In summary Shor's algorithm has two parts:

- A reduction of the factoring problem to the problem of order-finding, which can be done on a classical computer;
- A quantum algorithm to solve the order-finding problem.

Shor's algorithm

A toy example can be when we have N = 15. Let's see how Shor's algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)

$$2 \ gcd(a, N) = gcd(2, 15) = 1$$

- 3 Find the period of function $f(x) = a^x \mod N$, which satisfies f(x + r) = f(x);
- 4 Get r = 4 through the circuit below;
- 5 $gcd(a^{\frac{r}{2}}+1, N) = gcd(5, 15) = 5;$
- 6 $gcd(a^{\frac{r}{2}}-1, N) = gcd(3, 15) = 5;$
- 7 For N = 15, the two decomposed prime numbers are 3 and 5.

Ressource Estimation

Break RSA (Integer Factoring)

From Gidney & Ekerå(2019)² uses "3n + 0.002nlg(n) logical qubits, $0.3n^3 + 0.0005n^3lg(n)$ Toffolis, and $500n^2 + n^2lg(n)$ measurement depth to factor n-bit RSA integers"

RSA Bits	Qubits	Toffoli + T Gates (billions)
1024	3092	0.4
2048	6189	2.7
3072	9287	9.9

²Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019. https://arxiv.org/abs/1905.09749

Ressource Estimation

Break Binary ECC (DLP)

From Banegas, Bernstein, von Hoof and Lange(2021)³ we have that for breaking binary ECC we have $7n + \lfloor \log(n) \rfloor + 9$ qubits, $48n^3 + 8n^{\log(3)+1} + 352n^2\log(n) + 512n^2 + O(n^{\log(3)})$ Toffoli gates and $O(n^3)$ CNOT gates.

			Total		
n	qubits	TOF gates	CNOT gates	depth upper bound	TOF gates
163	1,157	893,585	827,379	1,262,035	293,095,880
233	1,647	1,669,299	1,614,947	2,405,889	781,231,932
283	1,998	2,427,369	2,358,734	3,503,510	1,378,745,592
571	4,015	8,987,401	9,080,190	13,237,682	10,281,586,744

³Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(1)
Other Quantum algorithms

- Simon's Algorithm (QFT);
- Ambaini's Algorithm (Element disticness);
- Claw finding Algorithm;
- Kuperberg's Algorithm (dihedral hidden subgroup problem);

Remember....

RSA, ECDSA, DSA.

Codes, Isogenies, MQ, Lattices and hash.

Questions

Thank you for your attention. Questions? gustavo@cryptme.in