Quantum Cryptanalysis: Let's build a quantum computer

Gustavo Banegas ${ }^{1}$
 ฯٌ2Óa

February 9, 2021

[^0]
Outline

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms
Grover's algorithm
Shor's algorithm

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms
Grover's algorithm
Shor's algorithm

Why study post-quantum cryptography?

"Somebody announces that he's built a large quantum computer. RSA is dead. DSA is dead. Elliptic curves, hyperelliptic curves, class groups, whatever, dead, dead, dead."(Bernstein, 2005)

In other words..

Copyright $\$ 1997$ United Feature Syndicate, Inc.
Redistribution in whole or in part prohibited

There is already an alternative

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 - Grover presents "Quantum search algorithm for unoreded database";

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 - Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 - Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006-1st International Workshop on Post-Quantum Cryptography;

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 - Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006-1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008-2nd International Workshop on Post-Quantum Cryptography... and goes on;

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 - Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006-1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008-2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 - EU publishes H2O20 call including post-quantum crypto as topic;

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996 - Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006-1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008-2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 - EU publishes H2O20 call including post-quantum crypto as topic;
- 2015 - NSA admits that the world needs post-quantum crypto;

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996-Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006-1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008-2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 - EU publishes H2020 call including post-quantum crypto as topic;
- 2015 - NSA admits that the world needs post-quantum crypto;
- 2016 - NIST calls for submissions to "Post-Quantum Cryptography Standardization Project".
- 2019 - NIST receives 69 proper submissions;

A little bit of history

- 1994 - Peter Shor presents "Algorithms for quantum computation: discrete logarithms and factoring";
- 1996-Grover presents "Quantum search algorithm for unoreded database";
- 2003 - Daniel J. Bernstein introduces the concept of Post-quantum cryptography;
- PQCrypto 2006-1st International Workshop on Post-Quantum Cryptography;
- PQCrypto 2008-2nd International Workshop on Post-Quantum Cryptography... and goes on;
- 2014 - EU publishes H2020 call including post-quantum crypto as topic;
- 2015 - NSA admits that the world needs post-quantum crypto;
- 2016 - NIST calls for submissions to "Post-Quantum Cryptography Standardization Project".
- 2019 - NIST receives 69 proper submissions;
- 2020 - NIST is going to the 3rd round.

Introduction

How a quantum computer works?

- It perform computations based on probabilities of an object's state before it is measured;

Introduction

How a quantum computer works?

- It perform computations based on probabilities of an object's state before it is measured;
- We can change the probabilities of a state;

Introduction

How a quantum computer works?

- It perform computations based on probabilities of an object's state before it is measured;
- We can change the probabilities of a state;

$$
8^{\circ}
$$

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms
Grover's algorithm
Shor's algorithm

Quantum Computation - qubits

Classical bit vs Qubit

$$
\begin{array}{r}
|0\rangle=\binom{1}{0}|1\rangle=\binom{0}{1} \\
\alpha|0\rangle+\beta|1\rangle, \\
|\alpha|^{2}+|\beta|^{2}=1
\end{array}
$$

Classical Bit Qubit

Measure quantum state

Measuring collapses the state.

Quantum gates

Identity gate:
$|a\rangle-\quad 1-|a\rangle$
NOT gate:
$|a\rangle-N O T-|1-a\rangle$
CNOT gate:
$|a\rangle-|a\rangle$
$|b\rangle-|a \oplus b\rangle$

Hadamard Gate:

$$
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$|b\rangle-H-\frac{\left(|0\rangle+(-1)^{b}|1\rangle\right)}{\sqrt{2}}$
$|b\rangle-H-|b\rangle$
Toffoli gate:

$$
\begin{aligned}
& |a\rangle-|a\rangle \\
& |b\rangle-\bullet|b\rangle \\
& |c\rangle-|a b \oplus c\rangle
\end{aligned}
$$

n-Qubit system

Definition
$|\psi\rangle \in \mathbb{C}^{2}$ such that $\||\psi\rangle \|=1$,

$$
|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle
$$

where

$$
\sum_{x \in\{0,1\}^{n}}\left|\alpha_{x}\right|^{2}=1
$$

Example 2-qubit system

- 4 basis states:
$|0\rangle \otimes|0\rangle,|0\rangle \otimes|1\rangle,|1\rangle \otimes|0\rangle$,
$|1\rangle \otimes|1\rangle$.
- It is common to use just:
$|0\rangle|1\rangle,|10\rangle$

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms
Grover's algorithm
Shor's algorithm

Deutsch-Jozsa problem

- Input: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ either constant or balanced
- Output: 0 iff f is constant
- Constrains: f is a black box

For $n=1$ we have that
If $f(0)=0$ and $f(1)=1$ or $f(0)=1$ and $f(1)=0$ the function is balanced.
If $f(0)=0$ and $f(1)=0$ or $f(0)=1$ and $f(1)=1$ the function is constant.

Query complexity

- Deterministic: $2^{n-1}+1$

Deutsch-Jozsa problem

- Input: $f:\{0,1\}^{n} \rightarrow\{0,1\}$ either constant or balanced
- Output: 0 iff f is constant
- Constrains: f is a black box

For $n=1$ we have that
If $f(0)=0$ and $f(1)=1$ or $f(0)=1$ and $f(1)=0$ the function is balanced.
If $f(0)=0$ and $f(1)=0$ or $f(0)=1$ and $f(1)=1$ the function is constant.

Query complexity

- Deterministic: $2^{n-1}+1$
- Quantum: 1

Deutsch-Jozsa quantum circuit
Simple quantum circuit:

$$
|b\rangle-S_{f}-(-1)^{f(b)}|b\rangle
$$

Deutsch-Jozsa quantum circuit
Simple quantum circuit:

$$
\begin{aligned}
& |b\rangle-S_{f}-(-1)^{f(b)}|b\rangle \\
& |b\rangle-H-S_{f}-H-?
\end{aligned}
$$

Deutsch-Jozsa quantum circuit analysis

$$
|0\rangle-H-S_{f}-H-?
$$

- Initialization: $|0\rangle$.

Deutsch-Jozsa quantum circuit analysis

$$
|0\rangle-H-S_{f}-H
$$

- Initialization: $|0\rangle$.
- Parallelization: $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.

Deutsch-Jozsa quantum circuit analysis

$$
|0\rangle-H-S_{f}-H-?
$$

- Initialization: $|0\rangle$.
- Parallelization: $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
- Query: $\frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)$.

Deutsch-Jozsa quantum circuit analysis

$$
|0\rangle-H-S_{f}-H
$$

- Initialization: $|0\rangle$.
- Parallelization: $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
- Query: $\frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)$.
- Interferences: $\frac{1}{2}\left((-1)^{f(0)}(|0\rangle+|1\rangle)+(-1)^{f(1)}(|0\rangle-|1\rangle)\right)$.

Deutsch-Jozsa quantum circuit analysis

$$
|0\rangle-H-S_{f}-H-A=?
$$

- Initialization: $|0\rangle$.
- Parallelization: $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$.
- Query: $\frac{1}{\sqrt{2}}\left((-1)^{f(0)}|0\rangle+(-1)^{f(1)}|1\rangle\right)$.
- Interferences: $\frac{1}{2}\left((-1)^{f(0)}(|0\rangle+|1\rangle)+(-1)^{f(1)}(|0\rangle-|1\rangle)\right)$.
- Final State:

$$
\frac{1}{2}\left(\left((-1)^{f(0)}+(-1)^{f(1)}\right)|0\rangle+\left((-1)^{f(0)}-(-1)^{f(1)}\right)|1\rangle\right) .
$$

It is easy to expand for n-qubits.

Deutsch-Jozsa quantum circuit analysis

Deutsch-Jozsa analysis

If $f(0)=0$ and $f(1)=1$ or
$f(0)=1$ and $f(1)=0$
The function is balanced. In our quantum system we will end up with:

$$
\frac{1}{2}((0)|0\rangle+(2)|1\rangle)
$$

or

$$
\frac{1}{2}((0)|0\rangle+(-2)|1\rangle)
$$

If $f(0)=0$ and $f(1)=0$ or
$f(0)=1$ and $f(1)=1$
The function is constant. In our quantum system we will end up with:

$$
\frac{1}{2}((2)|0\rangle+(0)|1\rangle)
$$

or

$$
\frac{1}{2}((-2)|0\rangle+(0)|1\rangle)
$$

Table of Contents

Introduction

Quantum Computation

Quantum Circuits

Quantum Algorithms
Grover's algorithm
Shor's algorithm

Grover's Algorithm

Grover's algorithm in a nutshell

- Originally described as search of an element in an unoreded database.

Grover's Algorithm

Grover's algorithm in a nutshell

- Originally described as search of an element in an unoreded database.
- Needs $O(\sqrt{N})$ queries in database of size $N=2^{n}$ elements.

Grover's Algorithm

Grover's algorithm in a nutshell
$\operatorname{Grover}(f, t)$:

1. Start with $\left|\phi_{0}\right\rangle=\left|1^{n}\right\rangle$
2. Apply $\mathbf{H}^{\otimes n}$
3. Repeat $O\left(\sqrt{2^{n}}\right)$ times
4. Query to oracle \mathcal{O}_{f}
5. Amplification;
6. Return $x=|\phi\rangle$ with $f(x)=1$.

Grover's Algorithm

Grover's algorithm in a nutshell

$$
8^{\circ}
$$

Preimage search

Security of a hash function

Given a hash-function H . The following three security properties should hold:

- Collision resistance: It is computationally infeasible to find any two distinct inputs x, x^{\prime} which hash to the same output, i.e., such that $H(x)=H\left(x^{\prime}\right)$.
- Preimage resistance: It is computationally infeasible to find any preimage x^{\prime} such that $H\left(x^{\prime}\right)=y$ when given any image y.
- 2nd preimage resistance: It is computationally infeasible to find any second input which has the same output as any specified input, i.e., given x, to find a 2nd-preimage $x^{\prime} \neq x$ such that $H(x)=H\left(x^{\prime}\right)$.

Pre-quantum preimage search

Threat to AES

- van Oorschot-Wiener "parallel rho method".
- Uses a mesh of p small processors.
- Each running $2^{128} / p t$ fast steps, to find one of t independent AES keys k_{1}, \ldots, k_{t}, using a fixed plaintext, e.g, AES(0).

NIST has claimed that AES-128 is secure enough.
"Grover's algorithm requires a long-running serial computation, which is difficult to implement in practice. In a realistic attack, one has to run many smaller instances of the algorithm in parallel, which makes the quantum speedup less dramatic."

Introduction - Parallel rho method

Distinguish Point

Consider $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$
Take x an input of $H, x^{\prime}=H(x)$.
Thereafter, take x^{\prime} and apply H again, $x^{\prime \prime}=H\left(x^{\prime}\right)$.
It is possible to do it n times $\left(H^{n}\right)$, until a given condition is satified. In our case, we want the first $0<d<b / 2$ bits as 0 . $H_{d}^{n}(x)$ means d bits of x, computed n times.

$$
H_{d}^{n}(x)=\underbrace{0 \ldots 0}_{d \text { zeros }}\{0,1\}^{b / 2}
$$

Introduction - Parallel rho method

Distinguish Point

Results in pre and post-quantum preimage search

Grover's algorithm to find a preimage

Grover's algorithm to find a preimage

- Design AES as a quantum circuit.
- Design a quantum circuit for Grover's algorithm that uses the AES quantum circuit.
- Put the previous circuits in p processors using t keys.
- Quantum computer work in a way that requires all algorithms to be reversible.
- We need an reversible AES circuit to run with Grover's algorithm

Grover's algorithm to find a preimage

Grover's algorithm to find a preimage

- Design AES as a quantum circuit.
- Design a quantum circuit for Grover's algorithm that uses the AES quantum circuit.
- Put the previous circuits in p processors using t keys.
- Quantum computer work in a way that requires all algorithms to be reversible.
- We need an reversible AES circuit to run with Grover's algorithm
- We need to have low memory/resources.

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:
time 0 :
x
0
0
0
0

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0
time 2:	x	0	$H(x)$	$H^{2}(x)$	0

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0
time 2:	x	0	$H(x)$	$H^{2}(x)$	0
time 3:	x	0	$H(x)$	$H^{2}(x)$	$H^{3}(x)$

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0
time 2:	x	0	$H(x)$	$H^{2}(x)$	0
time 3:	x	0	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 4:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	$H^{3}(x)$

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0
time 2:	x	0	$H(x)$	$H^{2}(x)$	0
time 3:	x	0	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 4:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 5:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	0

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0
time 2:	x	0	$H(x)$	$H^{2}(x)$	0
time 3:	x	0	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 4:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 5:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	0
time 6:	x	$H^{4}(x)$	$H(x)$	0	0

Distinguish point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{4}(x)$:

time 0:	x	0	0	0	0
time 1:	x	0	$H(x)$	0	0
time 2:	x	0	$H(x)$	$H^{2}(x)$	0
time 3:	x	0	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 4:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	$H^{3}(x)$
time 5:	x	$H^{4}(x)$	$H(x)$	$H^{2}(x)$	0
time 6:	x	$H^{4}(x)$	$H(x)$	0	0
time 7:	x	$H^{4}(x)$	0	0	0

Low-communication parallel quantum multi-target preimage search

Gustavo Banegas \& Daniel J. Bernstein

- Bennett-Tompa technique to build a reversible circuit for distinguished points.
- Possible to achieve using low communication costs and no memory.

Result:

Factoring prime numbers

Factoring Integers with Shor's algorithm

Factoring prime numbers

Factoring Integers with Shor's algorithm

- Develop by Peter Shor in 1994;

Factoring prime numbers

Factoring Integers with Shor's algorithm

- Develop by Peter Shor in 1994;
- Brings apocalypse to cryptography;

Factoring prime numbers

Factoring Integers with Shor's algorithm

- Develop by Peter Shor in
 1994;
- Brings apocalypse to cryptography;
- It breaks RSA, ECDSA and DSA;

Factoring prime numbers

Factoring Integers with Shor's algorithm

- Develop by Peter Shor in 1994;
- Brings apocalypse to cryptography;
- It breaks RSA, ECDSA and DSA;
- How many qubits and gates do we need to run Shor's algorithm?

Shor's algorithm
In summary Shor's algorithm has two parts:

- A reduction of the factoring problem to the problem of order-finding, which can be done on a classical computer;

Shor's algorithm

In summary Shor's algorithm has two parts:

- A reduction of the factoring problem to the problem of order-finding, which can be done on a classical computer;
- A quantum algorithm to solve the order-finding problem.

Shor's algorithm

A toy example can be when we have $N=15$. Let's see how Shor's algorithm works:

1 Select an arbitrary number, such as $a=2(<15)$
$2 \operatorname{gcd}(a, N)=\operatorname{gcd}(2,15)=1$
3 Find the period of function $f(x)=a^{x} \bmod N$, which satisfies $f(x+r)=f(x) ;$
4 Get $r=4$ through the circuit below;
$5 \operatorname{gcd}\left(a^{\frac{r}{2}}+1, N\right)=\operatorname{gcd}(5,15)=5$;
$6 \operatorname{gcd}\left(a^{\frac{r}{2}}-1, N\right)=\operatorname{gcd}(3,15)=5$;
7 For $N=15$, the two decomposed prime numbers are 3 and 5 .

Ressource Estimation

Break RSA (Integer Factoring)

From Gidney \& Ekerå(2019) ${ }^{2}$ uses " $3 n+0.002 n \lg (n)$ logical qubits, $0.3 n^{3}+0.0005 n^{3} \lg (n)$ Toffolis, and $500 n^{2}+n^{2} \lg (n)$ measurement depth to factor n-bit RSA integers'

RSA Bits	Qubits	Toffoli + T Gates (billions)
1024	3092	0.4
2048	6189	2.7
3072	9287	9.9

[^1]
Ressource Estimation

Break Binary ECC (DLP)

From Banegas, Bernstein, von Hoof and Lange(2021) ${ }^{3}$ we have that for breaking binary ECC we have $7 n+\lfloor\log (n)\rfloor+9$ qubits, $48 n^{3}+8 n^{\log (3)+1}+352 n^{2} \log (n)+512 n^{2}+O\left(n^{\log (3)}\right)$ Toffoli gates and $O\left(n^{3}\right)$ CNOT gates.

		Single step			
Total					
n	qubits	TOF gates	CNOT gates	depth upper bound	TOF gates
163	1,157	893,585	827,379	$1,262,035$	$293,095,880$
233	1,647	$1,669,299$	$1,614,947$	$2,405,889$	$781,231,932$
283	1,998	$2,427,369$	$2,358,734$	$3,503,510$	$1,378,745,592$
571	4,015	$8,987,401$	$9,080,190$	$13,237,682$	$10,281,586,744$

[^2]Other Quantum algorithms

- Simon's Algorithm (QFT);
- Ambaini's Algorithm (Element disticness);
- Claw finding Algorithm;
- Kuperberg's Algorithm (dihedral hidden subgroup problem);

Remember....

RSA, ECDSA, DSA.

Codes, Isogenies, MQ, Lattices and hash.

Questions

Thank you for your attention.
Questions?
gustavo@cryptme.in

[^0]: ${ }^{1}$ INRIA \& LIX - École polytechnique, France gustavo@cryptme.in

[^1]: ${ }^{2}$ Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019. https://arxiv.org/abs/1905.09749

[^2]: ${ }^{3}$ Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2021(1)

