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Why study post-quantum cryptography?
“Somebody announces that he’s built a large quantum computer.
RSA is dead. DSA is dead. Elliptic curves, hyperelliptic curves,
class groups, whatever, dead, dead, dead.”(Bernstein, 2005)
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In other words..
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There is already an alternative
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A little bit of history
I 1994 - Peter Shor presents “Algorithms for quantum

computation: discrete logarithms and factoring”;

I 1996 - Grover presents “Quantum search algorithm for
unoreded database”;

I 2003 - Daniel J. Bernstein introduces the concept of
Post-quantum cryptography;

I PQCrypto 2006 - 1st International Workshop on
Post-Quantum Cryptography;

I PQCrypto 2008 - 2nd International Workshop on
Post-Quantum Cryptography... and goes on;

I 2014 - EU publishes H2020 call including post-quantum
crypto as topic;

I 2015 - NSA admits that the world needs post-quantum crypto;
I 2016 - NIST calls for submissions to “Post-Quantum

Cryptography Standardization Project”.
I 2019 - NIST receives 69 proper submissions;
I 2020 - NIST is going to the 3rd round.
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Introduction

How a quantum computer works?
I It perform computations based on probabilities of an object’s

state before it is measured;

I We can change the probabilities of a state;
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Ok! How can we use a quantum computer?
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Quantum Computation - qubits

Classical bit vs Qubit

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
α |0〉+ β |1〉 ,

|α|2 + |β|2 = 1

.
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Measure quantum state

Measuring collapses the state.
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Quantum gates

Identity gate:
|a〉 I |a〉

NOT gate:
|a〉 NOT |1− a〉

CNOT gate:
|a〉
|b〉

|a〉
|a⊕ b〉

Hadamard Gate:

I H = 1√
2

(
1 1
1 −1

)
|b〉 H

(|0〉+(−1)b|1〉)√
2

|b〉 H H |b〉

Toffoli gate:
|a〉
|b〉
|c〉

|a〉
|b〉
|ab ⊕ c〉
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n-Qubit system

Definition
|ψ〉 ∈ C2 such that || |ψ〉 || = 1,

|ψ〉 =
∑

x∈{0,1}n
αx |x〉

where ∑
x∈{0,1}n

|αx |2 = 1.

Example 2-qubit system
I 4 basis states:
|0〉⊗ |0〉, |0〉⊗ |1〉,|1〉⊗ |0〉,
|1〉 ⊗ |1〉.

I It is common to use just:
|0〉 |1〉,|10〉
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Deutsch-Jozsa problem
I Input: f : {0, 1}n → {0, 1} either constant or balanced
I Output: 0 iff f is constant
I Constrains: f is a black box

For n = 1 we have that
If f (0) = 0 and f (1) = 1 or f (0) = 1 and f (1) = 0 the function is
balanced.
If f (0) = 0 and f (1) = 0 or f (0) = 1 and f (1) = 1 the function is
constant.

Query complexity
I Deterministic: 2n−1 + 1

I Quantum: 1
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Deutsch-Jozsa quantum circuit
Simple quantum circuit:

|b〉 Sf (−1)f (b) |b〉

|b〉 H Sf H ?
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Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
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Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
I Parallelization: 1√

2
(|0〉+ |1〉).

I Query: 1√
2
((−1)f (0) |0〉+ (−1)f (1) |1〉).

I Interferences: 1
2((−1)

f (0)(|0〉+ |1〉) + (−1)f (1)(|0〉 − |1〉)).
I Final State:

1
2(((−1)

f (0) + (−1)f (1)) |0〉+ ((−1)f (0) − (−1)f (1)) |1〉).
It is easy to expand for n-qubits.
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Deutsch-Jozsa quantum circuit analysis

Deutsch-Jozsa analysis

If f (0) = 0 and f (1) = 1 or
f (0) = 1 and f (1) = 0
The function is balanced. In our
quantum system we will end up
with:

1
2
((0) |0〉+ (2) |1〉)

or

1
2
((0) |0〉+ (−2) |1〉)

If f (0) = 0 and f (1) = 0 or
f (0) = 1 and f (1) = 1
The function is constant. In our
quantum system we will end up
with:

1
2
((2) |0〉+ (0) |1〉)

or

1
2
((−2) |0〉+ (0) |1〉)
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Grover’s Algorithm

Grover’s algorithm in a nutshell

I Originally described as search of an element in an unoreded
database.

I Needs O(
√
N) queries in database of size N = 2n elements.
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Grover’s Algorithm

Grover’s algorithm in a nutshell

Grover(f , t):
1. Start with |φ0〉 = |1n〉
2. Apply H⊗n

3. Repeat O
(√

2n
)
times

4. Query to oracle Of

5. Amplification;
6. Return x = |φ〉 with f (x) = 1.
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Grover’s Algorithm

Grover’s algorithm in a nutshell
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Ok! Can we use Grover’s algorithm?
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Preimage search

Security of a hash function
Given a hash-function H. The following three security properties
should hold:
I Collision resistance: It is computationally infeasible to find any

two distinct inputs x , x ′ which hash to the same output, i.e.,
such that H(x) = H(x ′).

I Preimage resistance: It is computationally infeasible to find
any preimage x ′ such that H(x ′) = y when given any image y .

I 2nd preimage resistance: It is computationally infeasible to
find any second input which has the same output as any
specified input, i.e., given x , to find a 2nd-preimage x ′ 6= x
such that H(x) = H(x ′).
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Pre-quantum preimage search

Threat to AES
I van Oorschot–Wiener “parallel rho method”.

I Uses a mesh of p small processors.
I Each running 2128/pt fast steps, to find one of t independent

AES keys k1, . . . , kt , using a fixed plaintext, e.g, AES(0).

NIST has claimed that AES-128 is secure enough.
“Grover’s algorithm requires a long-running serial computation,
which is difficult to implement in practice. In a realistic attack, one
has to run many smaller instances of the algorithm in parallel,
which makes the quantum speedup less dramatic.”
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Introduction - Parallel rho method

Distinguish Point
Consider H : {0, 1}b → {0, 1}b
Take x an input of H, x ′ = H(x).
Thereafter, take x ′ and apply H again, x ′′ = H(x ′).
It is possible to do it n times (Hn), until a given condition is
satified. In our case, we want the first 0 < d < b/2 bits as 0.
Hn
d (x) means d bits of x, computed n times.

Hn
d (x) = 0 . . . 0︸ ︷︷ ︸

d zeros

{0, 1}b/2
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Introduction - Parallel rho method

Distinguish Point

x1

x1’

x1’
’

x1’
’’

x1’’’’

x1’’’’
’

Distinguish 
point

x2

x2’

x2’
’

x2’
’’

x2’’’’

x2’’’’
’

Distinguish 
point

xj

xj’

xj’’

xj’’’

xj’’’’

xj’’’’’

Distinguish 
point

xi

xi’

xi’’

xi’’
’
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Results in pre and post-quantum preimage search

Oracle
calls

p small
processors,

free
communication

p small
processors,
realistic

communication
Single-target
preimage

N N/p N/p pre-
quantum

√
N

√
N/p

√
N/p post-

quantum

Multi-target
preimage

N/t N/pt N/pt

√
N/t ? ?

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p
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Grover’s algorithm to find a preimage

Grover’s algorithm to find a preimage
I Design AES as a quantum circuit.
I Design a quantum circuit for Grover’s algorithm that uses the

AES quantum circuit.
I Put the previous circuits in p processors using t keys.

I Quantum computer work in a way that requires all algorithms
to be reversible.
I We need an reversible AES circuit to run with Grover’s

algorithm

I We need to have low memory/resources.
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Distinguish point in quantum setting

Trade-off from Bennett–Tompa
Example to compute H4(x):

time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0
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xt ... x1 

Hd(x1) .
.
.

Hn(x1)

.

.

.
Hn(xt)d d

... 

... 

Hd(xt) 

yt ... y1 

Hd(y1).
.
.

Hn(y1)

.

.

.
Hn(yt)d d

... 

... 

Hd(yt)

Hn(yi)d Hn(xj)d≟
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Low-communication parallel quantum multi-target
preimage search

Gustavo Banegas & Daniel J. Bernstein

I Bennett-Tompa technique to build a reversible circuit for
distinguished points.

I Possible to achieve using low communication costs and no
memory.
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Result:

Oracle
calls

p small
processors,

free
communication

p small
processors,
realistic

communication
Single-target
preimage

N N/p N/p pre-
quantum

√
N

√
N/p

√
N/p post-

quantum

Multi-target
preimage

N/t N/pt N/pt

√
N/t

√
N/pt

√
N/pt1/2

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p
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Factoring prime numbers

Factoring Integers with Shor’s algorithm

I Develop by Peter Shor in
1994;

I Brings apocalypse to
cryptography;

I It breaks RSA, ECDSA and
DSA;

I How many qubits and gates
do we need to run Shor’s
algorithm?
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Shor’s algorithm
In summary Shor’s algorithm has two parts:
I A reduction of the factoring problem to the problem of

order-finding, which can be done on a classical computer;

I A quantum algorithm to solve the order-finding problem.
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Shor’s algorithm
A toy example can be when we have N = 15. Let’s see how Shor’s
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)
2 gcd(a,N) = gcd(2, 15) = 1
3 Find the period of function f (x) = ax mod N, which satisfies
f (x + r) = f (x);

4 Get r = 4 through the circuit below;
5 gcd(a

r
2 + 1,N) = gcd(5, 15) = 5;

6 gcd(a
r
2 − 1,N) = gcd(3, 15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.
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Ressource Estimation

Break RSA (Integer Factoring)
From Gidney & Ekerå(2019)2 uses “3n+ 0.002nlg(n) logical qubits,
0.3n3 + 0.0005n3lg(n) Toffolis, and 500n2 + n2lg(n) measurement
depth to factor n-bit RSA integers”

RSA Bits Qubits Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

2Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.
https://arxiv.org/abs/1905.09749
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Ressource Estimation

Break Binary ECC (DLP)
From Banegas, Bernstein, von Hoof and Lange(2021)3 we have
that for breaking binary ECC we have 7n + blog(n)c+ 9 qubits,
48n3 + 8nlog(3)+1 + 352n2 log(n) + 512n2 +O(nlog(3)) Toffoli gates
and O(n3) CNOT gates.

Single step Total
n qubits TOF gates CNOT gates depth upper bound TOF gates
163 1,157 893,585 827,379 1,262,035 293,095,880
233 1,647 1,669,299 1,614,947 2,405,889 781,231,932
283 1,998 2,427,369 2,358,734 3,503,510 1,378,745,592
571 4,015 8,987,401 9,080,190 13,237,682 10,281,586,744

3Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum
cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Other Quantum algorithms
I Simon’s Algorithm (QFT);
I Ambaini’s Algorithm (Element disticness);
I Claw finding Algorithm;
I Kuperberg’s Algorithm (dihedral hidden subgroup problem);
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Remember....
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Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
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