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Why study quantum algorithms?
“Somebody announces that he’s built a large quantum computer.
RSA is dead. DSA is dead. Elliptic curves, hyperelliptic curves,
class groups, whatever, dead, dead, dead.”(Bernstein, 2005)
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In other words..
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There is already an alternative
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Ok! How can we use a quantum computer?
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Classical bit vs Qubit

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
α |0〉+ β |1〉 ,

|α|2 + |β|2 = 1

.
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Measure quantum state

Measuring collapses the state.

Gustavo Banegas Introduction to Quantum Algorithms and Code-Based Cryptography Implementation 8



Quantum gates

Identity gate:
|a〉 I |a〉

NOT gate:
|a〉 NOT |1− a〉

CNOT gate:
|a〉
|b〉

|a〉
|a⊕ b〉

Hadamard Gate:

I H = 1√
2

(
1 1
1 −1

)
|b〉 H

(|0〉+(−1)b|1〉)√
2

|b〉 H H |b〉

Toffoli gate:
|a〉
|b〉
|c〉

|a〉
|b〉
|ab ⊕ c〉
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n-Qubit system

Definition
|ψ〉 ∈ C2 such that || |ψ〉 || = 1,

|ψ〉 =
∑

x∈{0,1}n
αx |x〉

where ∑
x∈{0,1}n

|αx |2 = 1.

Example 2-qubit system

I 4 basis states:
|0〉⊗ |0〉, |0〉⊗ |1〉,|1〉⊗ |0〉,
|1〉 ⊗ |1〉.

I It is common to use just:
|0〉 |1〉,|10〉

Gustavo Banegas Introduction to Quantum Algorithms and Code-Based Cryptography Implementation 10



Deutsch-Jozsa problem

I Input: f : {0, 1}n → {0, 1} either constant or balanced
I Output: 0 iff f is constant
I Constrains: f is a black box

Query complexity

I Deterministic: 2n−1 + 1

I Quantum: 1
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Deutsch-Jozsa quantum circuit
Simple quantum circuit:

|b〉 Sf (−1)f (b) |b〉

“Real” quantum circuit:

|b〉 H Sf H ?
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Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
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Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
I Parallelization: 1√

2
(|0〉+ |1〉).
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Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
I Parallelization: 1√

2
(|0〉+ |1〉).

I Query: 1√
2
((−1)f (0) |0〉+ (−1)f (1) |1〉).
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Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
I Parallelization: 1√

2
(|0〉+ |1〉).

I Query: 1√
2
((−1)f (0) |0〉+ (−1)f (1) |1〉).

I Interferences: 1
2((−1)

f (0)(|0〉+ |1〉) + (−1)f (1)(|0〉 − |1〉)).

Gustavo Banegas Introduction to Quantum Algorithms and Code-Based Cryptography Implementation 16



Deutsch-Jozsa quantum circuit analysis

|0〉 H Sf H ?

I Initialization: |0〉.
I Parallelization: 1√

2
(|0〉+ |1〉).

I Query: 1√
2
((−1)f (0) |0〉+ (−1)f (1) |1〉).

I Interferences: 1
2((−1)

f (0)(|0〉+ |1〉) + (−1)f (1)(|0〉 − |1〉)).
I Final State:

1
2(((−1)

f (0) + (−1)f (1)) |0〉+ ((−1)f (0) − (−1)f (1)) |1〉).

It is easy to expand for n-qubits.
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Grover’s Algorithm

Grover’s algorithm in a nutshell

I Originally described as search element in an unoreded
database.

I Needs O(
√
N) queries in database of size N = 2n elements.
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Preimage search

Security of a hash function
Given a hash-function H. The following three security properties
should hold:
I Collision resistance: It is computationally infeasible to find any

two distinct inputs x , x ′ which hash to the same output, i.e.,
such that H(x) = H(x ′).

I Preimage resistance: It is computationally infeasible to find
any preimage x ′ such that H(x ′) = y when given any image y .

I 2nd preimage resistance: It is computationally infeasible to
find any second input which has the same output as any
specified input, i.e., given x , to find a 2nd-preimage x ′ 6= x
such that H(x) = H(x ′).
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Pre-quantum preimage search

Threat to AES
I van Oorschot–Wiener “parallel rho method”.

I Uses a mesh of p small processors.
I Each running 2128/pt fast steps, to find one of t independent

AES keys k1, . . . , kt , using a fixed plaintext, e.g, AES(0).

NIST has claimed that AES-128 is secure enough.
“Grover’s algorithm requires a long-running serial computation,
which is difficult to implement in practice. In a realistic attack, one
has to run many smaller instances of the algorithm in parallel,
which makes the quantum speedup less dramatic.”
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Introduction - Parallel rho method

Distinguish Point
Consider H : {0, 1}b → {0, 1}b
Take x an input of H, x ′ = H(x).
Thereafter, take x ′ and apply H again, x ′′ = H(x ′).
It is possible to do it n times (Hn), until a given condition is
satified. In our case, we want the first 0 < d < b/2 bits as 0.
Hn
d (x) means d bits of x, computed n times.

Hn
d (x) = 0 . . . 0︸ ︷︷ ︸

d zeros

{0, 1}b/2
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Introduction - Parallel rho method

Distinguish Point
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Results in pre and post-quantum preimage search

Oracle
calls

p small
processors,

free
communication

p small
processors,
realistic

communication
Single-target
preimage

N N/p N/p pre-
quantum

√
N

√
N/p

√
N/p post-

quantum

Multi-target
preimage

N/t N/pt N/pt

√
N/t ? ?

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p
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Apply Grover’s algorithm to find a preimage

Grover’s algorithm to find a preimage

I Design AES as a quantum circuit.
I Design a quantum circuit for Grover’s algorithm that uses the

AES quantum circuit.
I Put the previous circuits in p processors using t keys.

I Quantum computer work in a way that requires all algorithms
to be reversible.
I Need to design AES circuit and Grover circuit as reversible

circuits.

I Want to have low memory.
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Distinguish point in quantum setting

Trade-off from Bennett–Tompa
Example to compute H4(x):

time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0
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xt ... x1 

Hd(x1) .
.
.

Hn(x1)

.

.

.
Hn(xt)d d

... 

... 

Hd(xt) 

yt ... y1 

Hd(y1).
.
.

Hn(y1)

.

.

.
Hn(yt)d d

... 

... 

Hd(yt)

Hn(yi)d Hn(xj)d≟
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Low-communication parallel quantum multi-target
preimage search

Gustavo Banegas & Daniel J. Bernstein

I Bennett-Tompa technique to build a reversible circuit for
distinguished points.

I Possible to achieve using low communication costs and no
memory.
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Result:

Oracle
calls

p small
processors,

free
communication

p small
processors,
realistic

communication
Single-target
preimage

N N/p N/p pre-
quantum

√
N

√
N/p

√
N/p post-

quantum

Multi-target
preimage

N/t N/pt N/pt

√
N/t

√
N/pt

√
N/pt1/2

Collision
√
N

√
N/p

√
N/p

3
√
N

√
N/p

√
N/p
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Quantum Algorithms

I Deutsch–Jozsa’s Algorithm;
I Grover’s Algorithm (Search in unoreded database);
I Simon’s Algorithm (QFT);
I Shor’s Algorithm (Factoring numbers);
I Ambaini’s Algorithm (Element disticness);
I Claw finding Algorithm;
I Kuperberg’s Algorithm (dihedral hidden subgroup problem);
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Post-quantum cryptography

A little bit of history in Post-quantum cryptography

I 2003: Small community of post-quantum researchers.
I 2014: PQCrypto conference reaches more than 100 people.
I 2015: NSA admits that the world needs post-quantum crypto.
I 2016: Other agencies also react (NCSC UK, NCSC NL, NSA).
I 2016: NIST calls for submissions to “Post-Quantum

Cryptography Standardization Project”.
I 2017: NIST receives 69 proper submissions.
I 2018: PQCrypto conference reaches more than 350 people.
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Introduction to error correction

First a little bit of theory in error correction

I Enable data recovery after noisy transmission.
I In general, k bits of data get stored in n bits, adding

redundancy.
I If no error occurred, these n bits satisfy n − k parity check

equations; else can correct some errors from the error pattern.
I Check equations can be represented by a matrix.
I Good codes can correct many errors without blowing up

storage too much; offer guarantee to correct t errors (often
can correct or at least detect more).
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Introduction to Code-based cryptography

McEliece cryptosystem

I Use Goppa codes for public-key cryptography.
I Oldest (1978) code-based cryptosystem.
I Easily scale up for higher security.
I Big public key: at least ≈ 256KB .

Gustavo Banegas Introduction to Quantum Algorithms and Code-Based Cryptography Implementation 32



Alternative Codes

Other codes that can be used
I Quasi-cyclic codes (QC).
I Quasi-Dyadic Codes (Misoczki, Barreto ’09).
I Generalized Srivastava (Persichetti ’11).

Use subfield subcode construction to encrypt in the subcode and
decrypt using parent code.

Fq - Encryption

Fqm - Decryption
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DAGS is Key Encapsulation using Dyadic GS Codes

DAGS is a joint project by:
Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje,
Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh
Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane
N’diaye, Duc Tri Nguyen, Edoardo Persichetti and Jefferson E.
Ricardini
https://www.dags-project.org
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DAGS: Key Encapsulation using Dyadic GS Codes

DAGS cryptosystem

I Use Generalized Srivastava codes.
I No decoding errors.
I Smaller keys.

DAGS Sizes (in bytes)

Parameter Set Public Key Private Key Ciphertext
DAGS 1 8112 2496 656
DAGS 3 11264 4864 1248
DAGS 5 19712 6400 1632

Gustavo Banegas Introduction to Quantum Algorithms and Code-Based Cryptography Implementation 35



DAGS: Key Encapsulation using Dyadic GS Codes

DAGS cryptosystem

I Use Generalized Srivastava codes.
I No decoding errors.
I Smaller keys.

DAGS Sizes (in bytes)

Parameter Set Public Key Private Key Ciphertext
DAGS 1 8112 2496 656
DAGS 3 11264 4864 1248
DAGS 5 19712 6400 1632

Gustavo Banegas Introduction to Quantum Algorithms and Code-Based Cryptography Implementation 35



About DAGS implementation
Key generation

I Operations in F216 and in F28 .
I Additions are “cheap”.
I Multiplications and inversions are costly.

Originally with log and i-log tables.
I Transformation from F216 to F28 and vice-versa.

I Random generation of a polynomial in F216 .

Encapsulation

I Operations in F28 .
I Random generation of a polynomial in F28 .
I Hash function calls.

Decapsulation

I Operations in F216 and in F28 .
I Random generation of a polynomial in F28 .
I Hash function calls.
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Implementation details

How to represent elements in F28 or F216?
Elements in F2 are just: {0, 1}.

Elements in F2m can be seen as a vector of m bits. For example:
F28 is a vector of 8 bits, i.e., 1 byte. In a program language we can
represent as an integer, element x3 + x + 1 = 11.
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Implementation details

How to implement operations in F28 or F216?
Multiplications can be trick since we want to avoid “side-channel”
attacks such as timing attacks or cache attacks. We want avoid
this:
Algorithm 1: Square and multiply in “RSA”.
Data: C as integer, d as private exponent, n as length of d in

bits and N
Result: x = Cd mod N
x ← C ;
for j ← 1 to N do

x ← mod(x2,N);
if dj == 1 then

x ← mod(xC ,N);
end
next j ;

end
return x;
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Implementation details

How to implement multiplication in F28 or F216 avoiding
timing attacks?
Algorithm 2: Constant-time multiplication and reduction using
f (x) = x8 + x4 + x3 + x2 + 1.
Data: a, b elements in F28

Result: c = abmodx8 + x4 + x3 + x2 + 1
c ← 0;
for i ← 0 to 7 do

c ← c ⊕ (a ∗ (b(1 << i)));
end
c ← c&0xFFF ;
c ← c ⊕ (c >> 6);
c ← c ⊕ (c >> 5)&0x3E ;
c ← c&0x3F ;
return c;
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Implementation details

Other operations
Inversions can be implemented using exponentiation:

α−1 = αm−2 ∈ F2m

Division can be implemented as:

β ∗ α−1 = β/α
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Implementation details

Techniques to avoid side-channel attacks

I Avoid branches (if, while), use masking ;
I Avoid big tables;
I Check for time variations.
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Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
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