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Why study quantum algorithms?

“Somebody announces that he's built a large quantum computer.
RSA is dead. DSA is dead. Elliptic curves, hyperelliptic curves,
class groups, whatever, dead, dead, dead.”(Bernstein, 2005)
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In other words..
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There is already an alternative

MQ@-based Cryptography Code-based Cryptography

Isogeny-based Cryptography

IPosthuantum Cryptography

Hash-based Cryptography /—\ Lattice-based Cryptography
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Ok! How can we use a quantum computer?

9
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Classical bit vs Qubit

@0

Q1

Classical Bit

Qubit
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la? + 18 =1
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Measure quantum state

I KNOW WHAT
STATE IT
SHOULD BE IN...

DISQUALIFIED?!
IT'S JUST A THOUGHT
EXPERIMENT. OBSERVE
THE CAT IS FINE!

Quantum
Entanglement
=
OPEN

ML

©2014 MATTHEW TARPLEY

WM MARTDEATHCOMICS COM

Measuring collapses the state.
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Quantum gates
Identity gate: Hadamard Gate:
) LT+ 1a) > H:H} _11>
NOT gate:

|a) ANOT}- |1 - a) |b) J- (D)
CNOT gate: Ib) b)

a) =12 A
Ib) & |a @ b) offoli gate:

|a) —— |a)

|b) —— |b)

|c) - |ab @ c)
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n-Qubit system

Definition Example 2-qubit system

€ C2 such that =1,
W) suc a H WJ> H » 4 basis states:

_ 0) ®0), 0) ®1),|1) @ |0),
|¢) = Z Oy ‘X> 1) ® [1).
xe{0,1}n ) )
» |t is common to use just:
where 0) [1),/10)
Z |ax|2 =1
xe{0,1}"
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Deutsch-Jozsa problem

» Input: f:{0,1}" — {0, 1} either constant or balanced
» Output: 0 iff f is constant

» Constrains: f is a black box

Query complexity

» Deterministic: 2" 1 +1
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Deutsch-Jozsa problem

» Input: f:{0,1}" — {0, 1} either constant or balanced
» Output: 0 iff f is constant

» Constrains: f is a black box

Query complexity

» Deterministic: 2" 1 +1
» Quantum: 1
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Deutsch-Jozsa quantum circuit

Simple quantum circuit:

|b) (=1)"®)[b)
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Deutsch-Jozsa quantum circuit

Simple quantum circuit:
|b) (1)) [p)

“Real” quantum circuit:

|b) AH}H Sr [HHE?
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Deutsch-Jozsa quantum circuit analysis

10) AH[— S |—H]-?

» Initialization: |0).
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Deutsch-Jozsa quantum circuit analysis

10) AHH S [—HH]-?

» Initialization: |0).
» Parallelization: %(\O) +11)).
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Deutsch-Jozsa quantum circuit analysis

10) ?
» Initialization: |0).

» Parallelization: \%(|O>+|1>)
> Query: Z5((~1)@0) + (~1)" M J1)).
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Deutsch-Jozsa quantum circuit analysis

10) AHH S [—HH]-7?

> Initialization: |0).

» Parallelization: %(\O) + |1)).

> Query: ((=1)"?0) + (~1) V) [1)).

> Interferences: 3((~1))(|0) + 1)) + (~1) ([0} — 1))
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Deutsch-Jozsa quantum circuit analysis

10) AHF— S¢ [HHAF7?

Initialization: |0).
Parallelization: %(\O) +11)).

Query: L((~1)f©[0) + (~1)"® [1)).

vVYvy VvV VY

Final State:
(1)@ + (=)' D) |0) + (-1 — (-1)" M) |1)).

It is easy to expand for n-qubits.
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Grover's Algorithm

Grover's algorithm in a nutshell

[ |o> 7]
n% o) —HF ¢ g | - |g —} measure
l 0)— B} —J

» Originally described as search element in an unoreded
database.

> Needs O(v/N) queries in database of size N = 2" elements.
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Preimage search

Security of a hash function
Given a hash-function H. The following three security properties
should hold:

» Collision resistance: It is computationally infeasible to find any
two distinct inputs x, x” which hash to the same output, i.e.,
such that H(x) = H(x').

» Preimage resistance: It is computationally infeasible to find
any preimage x’ such that H(x’) = y when given any image y.

» 2nd preimage resistance: It is computationally infeasible to
find any second input which has the same output as any
specified input, i.e., given x, to find a 2nd-preimage x’ # x
such that H(x) = H(x').
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Pre-quantum preimage search

Threat to AES

» van Oorschot—Wiener “parallel rho method".

» Uses a mesh of p small processors.
» Each running 2128/pt fast steps, to find one of t independent
AES keys ki, ..., ks, using a fixed plaintext, e.g, AES(0).

NIST has claimed that AES-128 is secure enough.

“Grover's algorithm requires a long-running serial computation,
which is difficult to implement in practice. In a realistic attack, one
has to run many smaller instances of the algorithm in parallel,
which makes the quantum speedup less dramatic.”
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Introduction - Parallel rho method

Distinguish Point

Consider H : {0,1}> — {0,1}?

Take x an input of H, x' = H(x).

Thereafter, take x” and apply H again, x”" = H(x).

It is possible to do it n times (H"), until a given condition is
satified. In our case, we want the first 0 < d < b/2 bits as 0.
H’(x) means d bits of x, computed n times.

H7(x) = 0...0{0,1}5/2

d zeros

Gustavo Banegas [Introduction to Quantum Algorithms and Code-Based Cryptography Implementation

21



Introduction - Parallel rho method

Distinguish Point

Distinguish Distinguish Distinguish
point point point
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Results in pre and post-quantum preimage search

7

p small p small
Oracle processors, processors,
calls free realistic
communication communication
Single-target pre-
preimage W ‘ N/p \ N/p quantum
N Tn /N 7| post-
\/N ﬂ/p ﬂﬂ quantum
Multi-target p//¢ | [N /ot [N/ ot
preimage tE/ \JP \JP
V7t 2) ?
N/t Y, Q
Collision \/ﬁ‘ %ﬁ‘ %/P
Vi/p| Vi/p
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Apply Grover's algorithm to find a preimage

Grover's algorithm to find a preimage

Design AES as a quantum circuit.

Design a quantum circuit for Grover's algorithm that uses the
AES quantum circuit.

Put the previous circuits in p processors using t keys.

» Quantum computer work in a way that requires all algorithms
to be reversible.
» Need to design AES circuit and Grover circuit as reversible
circuits.
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Apply Grover's algorithm to find a preimage

Grover's algorithm to find a preimage

Design AES as a quantum circuit.

Design a quantum circuit for Grover's algorithm that uses the
AES quantum circuit.

Put the previous circuits in p processors using t keys.

» Quantum computer work in a way that requires all algorithms
to be reversible.
» Need to design AES circuit and Grover circuit as reversible
circuits.

» Want to have low memory.
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time O: X 0 0 0 0
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0: X 0 0 0 0
time 1. x 0 H(x) 0 0
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0:  x 0 0
time 1: X 0 H(x) 0
time 2:  x 0 H(x) H?(x)
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0: X 0 0 0 0
time 1. x 0 H(x) 0 0
time 2:  x 0 H(x) H?(x) 0
time 3: X 0 H(x)  H*(x) H3(x)
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0: X 0 0 0 0
time 1:  x 0 H(x) 0 0
time 2:  x 0 H(x) H?(x) 0
time 3: X 0 H(x)  H*(x) H3(x)
time4: x  HYx) H(x) H?(x) H3(x)
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0: X 0 0 0 0
time 1. x 0 H(x) 0 0
time 2:  x 0 H(x) H?(x) 0
time 3: X 0 H(x)  H*(x) H3(x)
time4: x  HYx) H(x) H?(x) H3(x)
time 5  x  H*x) H(x) H?*x) 0

Gustavo Banegas [Introduction to Quantum Algorithms and Code-Based Cryptography Implementation

25



Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0:  x 0 0 0 0
time 1. x 0 H(x) 0 0
time 2:  x 0 H(x) H?(x) 0
time 3: X 0 H(x)  H*(x) H3(x)
time4: x  HYx) H(x) H?(x) H3(x)
time 5  x  H*x) H(x) H?*x) 0
time 6:  x  HY(x)  H(x) 0 0
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Distinguish point in quantum setting

Trade-off from Bennett—Tompa
Example to compute H*(x):

time 0:  x 0 0 0 0
time 1:  x 0 H(x) 0 0
time 2:  x 0 H(x) H?(x) 0
time 3: X 0 H(x)  H*(x) H3(x)
time4: x  HYx) H(x) H?(x) H3(x)
time 5  x  H*x) H(x) H?*x) 0
time 6:  x  HY(x)  H(x) 0 0
time7:  x  H*x) 0 0 0
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Gustavo Banegas
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Hd_(x1) - H d.(xl)
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Ha(y;) £ Hi(x)
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Low-communication parallel quantum multi-target
preimage search

Gustavo Banegas & Daniel J. Bernstein

» Bennett-Tompa technique to build a reversible circuit for
distinguished points.

» Possible to achieve using low communication costs and no
memory.
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Result:

7

p small p small
Oracle processors, processors,
calls free realistic
communication communication
Single-target pre-
preimage W ‘N/p ‘N/p quantum
/N 7| post-
VN ﬂﬂiﬂﬂ quantum
Multi-target] py /] 'N/pt]| 'N/pt
preimage tE/ \Jp \JP
N S Wy
Collision \/ﬁ‘ %/7’ %/P
ViV/p| VIV/p
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Quantum Algorithms

>

vVvyvyVvyypy

Deutsch—Jozsa's Algorithm;

Grover's Algorithm (Search in unoreded database);

Simon's Algorithm (QFT);

Shor's Algorithm (Factoring numbers);

Ambaini's Algorithm (Element disticness);

Claw finding Algorithm;

Kuperberg's Algorithm (dihedral hidden subgroup problem);
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Post-quantum cryptography

A little bit of history in Post-quantum cryptography

| 2

>
>
>
>

vy

2003:
2014:
2015:
2016:
2016:

Small community of post-quantum researchers.
PQCrypto conference reaches more than 100 people.
NSA admits that the world needs post-quantum crypto.
Other agencies also react (NCSC UK, NCSC NL, NSA).

NIST calls for submissions to “Post-Quantum

Cryptography Standardization Project”.

2017:
2018:

NIST receives 69 proper submissions.

PQCrypto conference reaches more than 350 people.
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Introduction to error correction

First a little bit of theory in error correction

» Enable data recovery after noisy transmission.

» In general, k bits of data get stored in n bits, adding
redundancy.

» If no error occurred, these n bits satisfy n — k parity check
equations; else can correct some errors from the error pattern.

» Check equations can be represented by a matrix.

» Good codes can correct many errors without blowing up
storage too much; offer guarantee to correct t errors (often
can correct or at least detect more).
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Introduction to Code-based cryptography

McEliece cryptosystem

> Use Goppa codes for public-key cryptography.
> Oldest (1978) code-based cryptosystem.

> Easily scale up for higher security.

> Big public key: at least ~ 256KB.
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Alternative Codes

Other codes that can be used

» Quasi-cyclic codes (QC).
» Quasi-Dyadic Codes (Misoczki, Barreto "09).

» Generalized Srivastava (Persichetti '11).

Use subfield subcode construction to encrypt in the subcode and
decrypt using parent code.
Fgm - Decryption

Fg4 - Encryption
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DAGS is Key Encapsulation using Dyadic GS Codes

DAGS is a joint project by:

Gustavo Banegas, Paulo S. L. M. Barreto, Brice Odilon Boidje,
Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh
Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane
N'diaye, Duc Tri Nguyen, Edoardo Persichetti and Jefferson E.
Ricardini

https://www.dags-project.org
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DAGS: Key Encapsulation using Dyadic GS Codes

DAGS cryptosystem

> Use Generalized Srivastava codes.
> No decoding errors.

> Smaller keys.
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DAGS: Key Encapsulation using Dyadic GS Codes

DAGS cryptosystem

Use Generalized Srivastava codes.
No decoding errors.

Smaller keys.

DAGS Sizes (in bytes)

’ Parameter Set H Public Key Private Key ‘ Ciphertext ‘
DAGS 1 8112 2496 656
DAGS 3 11264 4864 1248
DAGS 5 19712 6400 1632

Gustavo Banegas [Introduction to Quantum Algorithms and Code-Based Cryptography Implementation



About DAGS implementation
Key generation

» Operations in Fyis and in Fos.
» Additions are “cheap”.
» Multiplications and inversions are costly.
Originally with log and i-log tables.
» Transformation from Fo1e to Fos and vice-versa.

» Random generation of a polynomial in Fyis.
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About DAGS implementation
Key generation

» Operations in Fyis and in Fos.
» Additions are “cheap”.
» Multiplications and inversions are costly.
Originally with log and i-log tables.
» Transformation from Fo1e to Fos and vice-versa.

» Random generation of a polynomial in Fyis.
Encapsulation

» Operations in [Fys.
» Random generation of a polynomial in Fys.
» Hash function calls.
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About DAGS implementation
Key generation

» Operations in Fyis and in Fos.
» Additions are “cheap”.
» Multiplications and inversions are costly.
Originally with log and i-log tables.
» Transformation from Fo1e to Fos and vice-versa.

» Random generation of a polynomial in Fyis.
Encapsulation

» Operations in [Fys.
» Random generation of a polynomial in Fys.
» Hash function calls.
Decapsulation
» Operations in Fyis and in Fos.
» Random generation of a polynomial in Fys.

» Hash function calls.
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Implementation details

How to represent elements in Fps or Fpi47?
Elements in F> are just: {0,1}.
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Implementation details

How to represent elements in Fps or Fpi47?

Elements in F> are just: {0,1}.

Elements in Fom can be seen as a vector of m bits. For example:
[F,s is a vector of 8 bits, i.e., 1 byte. In a program language we can
represent as an integer, element x3 + x + 1 = 11.
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Implementation details

How to implement operations in Fys or Fyig?

Multiplications can be trick since we want to avoid “side-channel”
attacks such as timing attacks or cache attacks. We want avoid

this:
Algorithm 1: Square and multiply in "RSA".
Data: C as integer, d as private exponent, n as length of d in
bits and N
Result: x = C¢ mod N
x <« C;
for j « 1 to N do
x < mod(x?, N);

if dj ==1 then
| x ¢+ mod(xC,N);
end
next J;
end
return x;
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Implementation details

How to implement multiplication in Fps or [Fo14 avoiding
timing attacks?

Algorithm 2: Constant-time multiplication and reduction using
F(x)=x®+x* +x3+x2+ 1,

Data: a, b elements in Fps
Result: ¢ = abmodx® + x* + x3 + x> +1
c+ 0
for i< 0 to7do

| cca(ax(b(l<<i)));
end

¢ + c&O0xFFF;
cc@(c>>6)

¢+ c® (c >> 5)&0x3E;

c + c&0x3F;
return c;
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Implementation details

Other operations
Inversions can be implemented using exponentiation:
a l=am2cFom

Division can be implemented as:

Bxa~l=B/a
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Implementation details

Techniques to avoid side-channel attacks

» Avoid branches (if, while), use masking ;
> Avoid big tables;

» Check for time variations.
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Questions

Thank you for your attention.
Questions?
gustavo@cryptme.in

Clear your mind ofgquestions:

Gustavo Banegas [Introduction to Quantum Algorithms and Code-Based Cryptography Implementation

42



	Introduction
	Quantum computing
	Quantum Circuits
	Code-based Cryptography

