Designing Efficient Dyadic Operations for Cryptographic Applications

Gustavo Banegas¹, Paulo S. L. M. Barreto², Edoardo Persichetti³ and Paolo Santini⁴

August 19, 2018

¹Technische Universiteit Eindhoven, Netherlands

²University of Washington at Tacoma, USA

³Florida Atlantic University, USA

⁴Università Politecnica delle Marche, Italy

Post-Quantum Cryptography

NIST proposals

November 2017: NIST posts 82 submissions from 260 people.

	Signatures	KEM/Encryption	Overall
Lattice-based	4	24	28
Code-based	5	19	24
MQ-based	7	6	13
Hash-based	4		4
Other	3	10	13
Total	23	59	82

DAGS: Key Encapsulation from Dyadic GS Codes

- It is a code-based KEM;
- It uses Generalized Srivastava codes;
- ► It has short keys

DAGS: Key Encapsulation from Dyadic GS Codes

- It is a code-based KEM;
- It uses Generalized Srivastava codes;
- It has short keys, much smaller than Classic McEliece;
- ► As the name suggest it uses dyadic operations.

Introduction

What did we do?

- Improve code-based cryptographic schemes that use Quasi-Dyadic (QD) operations;
- Analyze the multiplication of dyadic matrices using: "Standard", Karatsuba and Fast Walsh-Hadamard Transformation;
- Apply LUP decomposition to dyadic case.

Preliminaries & Notations

What are dyadic matrices?

Given a ring \mathcal{R} and a vector $h = (h_0, h_1, \dots, h_{n-1}) \in \mathcal{R}$ with $n = 2^r, r \in \mathbb{N}$, called the order.

A dyadic matrix is the symmetric matrix with components $\Delta_{ij} = h_{i \oplus j}$, where \oplus stands for bitwise exclusive-or.

We use $\Delta(h)$ to denote dyadic matrix.

The product of two dyadic matrices is a dyadic matrix.

Quasi-dyadic matrix

A quasi-dyadic matrix is a block matrix whose blocks are dyadic.

Preliminaries & Notations

What are dyadic matrices?

Given a ring \mathcal{R} and a vector $h = (h_0, h_1, \dots, h_{n-1}) \in \mathcal{R}$ with $n = 2^r, r \in \mathbb{N}$, called the order.

A dyadic matrix is the symmetric matrix with components $\Delta_{ij} = h_{i \oplus j}$, where \oplus stands for bitwise exclusive-or.

We use $\Delta(h)$ to denote dyadic matrix.

The product of two dyadic matrices is a dyadic matrix.

Quasi-dyadic matrix

A quasi-dyadic matrix is a block matrix whose blocks are dyadic. In particular, we focus on the special case of quasi-dyadic matrices with elements belonging to a field \mathbb{F} of characteristic 2.

Preliminaries & Notations

A dyadic permutation

A dyadic permutation is a dyadic matrix $\Pi^i \in \Delta(\{0,1\}^n)$ given by $\Pi^i = \Delta(\pi^i)$ where π^i is the i-th unit vector.

Example

Suppose n = 4, and i = 1. So, we have $\pi^1 = (0, 1, 0, 0)$ and Π^1 is equal to:

$$\mathbf{\Pi}^1 = egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 1 & 0 \end{bmatrix}$$

The element of a matrix **C** in position (i, j) is obtained as the multiplication between the *i*-th row of **A** and the *j*-th column of **B**.

The element of a matrix **C** in position (i, j) is obtained as the multiplication between the *i*-th row of **A** and the *j*-th column of **B**. However, *A* and *B* are **dyadic matrices** and they are **symmetric**. So, the product is equivalent to the inner product between *i*-th row of *A* and the *j*-th of *B*.

The schoolbook matrix multiplication takes 2^{3r} multiplications. Because $\Delta(a)\Delta(b)$ is dyadic we only need the top row.

Standard Multiplication

```
input : r \in \mathbb{N}, n = 2^r and a, b \in \mathbb{F}^n
output: c \in \mathbb{F}^n such that \Delta(c) = \Delta(a)\Delta(b)
c \leftarrow (0, 0, \ldots, 0);
c_0 \leftarrow a_0 b_0;
for i \leftarrow 1 to n-1 do
       c_0 \leftarrow c_0 + a_i b_i;
       i^{(b)} \leftarrow binary representation of i;
  \begin{vmatrix} j^{(b)} \leftarrow \text{binary representation of } j; \\ \pi^{(b)} \leftarrow j^{(b)} \oplus j^{(b)} \oplus j^{(b)} \end{vmatrix}
           \pi \leftarrow \text{integer representation of } \pi^{(b)};
c_i \leftarrow c_i + a_i b_{\pi};
       end
end
```

return c;

Standard Multiplication

```
input : r \in \mathbb{N}, n = 2^r and a, b \in \mathbb{F}^n
output: c \in \mathbb{F}^n such that \Delta(c) = \Delta(a)\Delta(b)
c \leftarrow (0, 0, \ldots, 0);
c_0 \leftarrow a_0 b_0;
for i \leftarrow 1 to n-1 do
      c_0 \leftarrow c_0 + a_i b_i;
      i^{(b)} \leftarrow binary representation of i;
     for i \leftarrow 0 to n - 1 do
     j^{(b)} \leftarrow binary representation of j;
         \pi^{(b)} \leftarrow i^{(b)} \oplus i^{(b)};
         \pi \leftarrow \text{integer representation of } \pi^{(b)};
c_i \leftarrow c_i + a_i b_{\pi};
      end
```

end

return c:

Complexity estimated in:

$$C_{std} = r(2^{2r} - 2^r) + 2^{2r}C_{mul} + (2^{2r} - 2^r)C_{sum}$$

Dyadic Convolution

What is dyadic convolution?

The dyadic convolution of two vectors $a, b \in \mathbb{F}$, denoted by $a \triangle b$, is the unique vector of \mathbb{F} such that $\Delta(a \triangle b) = \Delta(a)\Delta(b)$.

Sylvester-Hadamard Matrices

$$\begin{aligned} \mathbf{H}_0 &= \begin{bmatrix} 1 \end{bmatrix}, \\ \mathbf{H}_r &= \begin{bmatrix} \mathbf{H}_{r-1} & \mathbf{H}_{r-1} \\ \mathbf{H}_{r-1} & -\mathbf{H}_{r-1} \end{bmatrix}, r > 0. \end{aligned}$$

Dyadic Convolution

What do we achieve?

Computing c such that $\Delta(a)\Delta(b) = \Delta(c)$ involves only three multiplications of vectors by Sylvester-Hadamard matrices.

What do we achieve?

Computing c such that $\Delta(a)\Delta(b) = \Delta(c)$ involves only three multiplications of vectors by Sylvester-Hadamard matrices.

For this we propose two algorithms. First, we need to compute \mathbf{aH}_r where \mathbf{a} is a vector and \mathbf{H}_r a Sylvester-Hadamard matrix. Second, we perform the multiplication

Dyadic Convolution

```
input : r \in \mathbb{N}, n = 2^r and \mathbf{a} \in \mathbb{F}^n
output: aH<sub>r</sub>
v \leftarrow 1:
for j \leftarrow 1 to n do
     w \leftarrow v:
    v \leftarrow (v \ll 1);
    /* left shift by one position
                                                                                                  */
     for i \leftarrow 0 to n-1 by v do
           for l \leftarrow 0 to w do
  \begin{vmatrix} s \leftarrow a_{i+1}; \\ q \leftarrow a_{i+1+w}; \\ a_{i+1} \leftarrow s + q; \\ a_{i+1+w} \leftarrow s - q; \end{vmatrix}
           end
     end
end
return a:
  Algorithm 1: The fast Walsh-Hadamard transform (FWHT)
```

Dyadic Convolution

input : $r \in \mathbb{N}$. $n = 2^r$ and $\mathbf{a}, \mathbf{b} \in \mathbb{F}^n$ output: $\mathbf{a} \circ \mathbf{b} \in \mathbb{F}^n$ such that $\mathbf{\Delta}(\mathbf{a})\mathbf{\Delta}(\mathbf{b}) = \mathbf{\Delta}(\mathbf{a} \circ \mathbf{b})$ $c \leftarrow (0, 0, \ldots, 0);$ $\tilde{c} \leftarrow (0, 0, \ldots, 0);$ Compute $\tilde{a} \leftarrow \mathbf{aH}_r$ via previous algorithm; Compute $\tilde{b} \leftarrow \mathbf{bH}_r$ via previous algorithm; for $i \leftarrow 0$ to n-1 do $\tilde{c} \leftarrow \tilde{a}_i \tilde{b}_i;$ end Compute $c \leftarrow \tilde{c} \mathbf{H}_r$ via previous algorithm; $c \leftarrow (c >> r);$ /* right shift by r positions */ return c:

Algorithm 2: Dyadic convolution via the FWHT

Karatsuba

Consider a vector **a** and its halves defined as:

$$\mathbf{a}_0 = \begin{bmatrix} \mathbf{a}_0, \mathbf{a}_1, \cdots, \mathbf{a}_{\frac{n}{2}-1} \end{bmatrix}$$
$$\mathbf{a}_1 = \begin{bmatrix} \mathbf{a}_{\frac{n}{2}}, \mathbf{a}_{\frac{n}{2}+1}, \cdots, \mathbf{a}_{n-1} \end{bmatrix}.$$

Some straightforward computations show that the following relations hold:

$$\begin{aligned} & \mathbf{c}_0 = \mathbf{a}_0 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1 \\ & \mathbf{c}_1 = (\mathbf{a}_0 + \mathbf{a}_1) \left(\mathbf{b}_0 + \mathbf{b}_1 \right) + \mathbf{c}_0 \end{aligned}$$

We can summarize the complexity of this method as:

$$C_{\texttt{Kar}} = 3^r \cdot C_{\texttt{mul}} + 4 \cdot [3^r - 2^r] \cdot C_{\texttt{sum}}$$

Inverse of dyadic matrices can be defined as:

The inverse $\Delta(a)^{-1}$ is a dyadic matrix $\Delta(b).$ We can compute b as follows:

- 1. Compute $\tilde{\mathbf{b}}$ with diag $(\tilde{\mathbf{b}}) = [\text{diag}(\mathbf{aH}_r)]^{-1}$;
- 2. Compute $\mathbf{b}' = \mathbf{\tilde{b}}\mathbf{H}_r$;
- 3. For each entry in \mathbf{b}' shift right r positions, the result is \mathbf{b} .

Improving DAGS

Table: Cost of Multiplication between Dyadic Matrices

		Standard	Karatsuba	Dyadic Convolution
F 2 ⁵	<i>r</i> = 4	4,833	2,194	3,899
	<i>r</i> = 5	21,285	5,909	12,045
F ₂₆	<i>r</i> = 4	5,833	2,194	4,899
	<i>r</i> = 5	23,231	6,223	13, 568

DAGS

Improving DAGS

Table: Comparison of Inversion Methods

	Original DAGS	LUP Inversion	LUP + Karatsuba
DAGS 1	1,318,973,209	321,771	108, 117
DAGS 3	2,211,076,311	557,822	198, 199
DAGS 5	17,925,330,712	654,713	431,890

Questions

Thank you for your attention. gustavo@cryptme.in