Designing Efficient Dyadic Operations for Cryptographic Applications

Gustavo Banegas ${ }^{1}$, Paulo S. L. M. Barreto ${ }^{2}$, Edoardo Persichetti ${ }^{3}$ and Paolo Santini ${ }^{4}$

August 19, 2018

[^0]
Post-Quantum Cryptography

NIST proposals
November 2017: NIST posts 82 submissions from 260 people.

	Signatures	KEM/Encryption	Overall
Lattice-based	4	24	28
Code-based	5	19	24
MQ-based	7	6	13
Hash-based	4		4
Other	3	10	13
Total	$\mathbf{2 3}$	$\mathbf{5 9}$	$\mathbf{8 2}$

DAGS

DAGS: Key Encapsulation from Dyadic GS Codes

- It is a code-based KEM;
- It uses Generalized Srivastava codes;
- It has short keys

DAGS

DAGS: Key Encapsulation from Dyadic GS Codes

- It is a code-based KEM;
- It uses Generalized Srivastava codes;
- It has short keys, much smaller than Classic McEliece;
- As the name suggest it uses dyadic operations.

Introduction

What did we do?

- Improve code-based cryptographic schemes that use Quasi-Dyadic (QD) operations;
- Analyze the multiplication of dyadic matrices using: "Standard", Karatsuba and Fast Walsh-Hadamard Transformation;
- Apply LUP decomposition to dyadic case.

Preliminaries \& Notations

What are dyadic matrices?
Given a ring \mathcal{R} and a vector $h=\left(h_{0}, h_{1}, \ldots h_{n-1}\right) \in \mathcal{R}$ with $n=2^{r}, r \in \mathbb{N}$, called the order.
A dyadic matrix is the symmetric matrix with components
$\boldsymbol{\Delta}_{i j}=h_{i \oplus j}$, where \oplus stands for bitwise exclusive-or.
We use $\boldsymbol{\Delta}(h)$ to denote dyadic matrix.
The product of two dyadic matrices is a dyadic matrix.
Quasi-dyadic matrix
A quasi-dyadic matrix is a block matrix whose blocks are dyadic.

Preliminaries \& Notations

What are dyadic matrices?
Given a ring \mathcal{R} and a vector $h=\left(h_{0}, h_{1}, \ldots h_{n-1}\right) \in \mathcal{R}$ with $n=2^{r}, r \in \mathbb{N}$, called the order.
A dyadic matrix is the symmetric matrix with components
$\Delta_{i j}=h_{i \oplus j}$, where \oplus stands for bitwise exclusive-or.
We use $\boldsymbol{\Delta}(h)$ to denote dyadic matrix.
The product of two dyadic matrices is a dyadic matrix.
Quasi-dyadic matrix
A quasi-dyadic matrix is a block matrix whose blocks are dyadic.
In particular, we focus on the special case of quasi-dyadic matrices with elements belonging to a field \mathbb{F} of characteristic 2.

Preliminaries \& Notations

A dyadic permutation
A dyadic permutation is a dyadic matrix $\Pi^{i} \in \boldsymbol{\Delta}\left(\{0,1\}^{n}\right)$ given by $\boldsymbol{\Pi}^{i}=\boldsymbol{\Delta}\left(\pi^{i}\right)$ where π^{i} is the i-th unit vector.

Example
Suppose $n=4$, and $i=1$. So, we have $\pi^{1}=(0,1,0,0)$ and Π^{1} is equal to:

$$
\boldsymbol{\Pi}^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Standard Multiplication

The element of a matrix \mathbf{C} in position (i, j) is obtained as the multiplication between the i-th row of \mathbf{A} and the j-th column of \mathbf{B}.

Standard Multiplication

The element of a matrix \mathbf{C} in position (i, j) is obtained as the multiplication between the i-th row of \mathbf{A} and the j-th column of \mathbf{B}. However, A and B are dyadic matrices and they are symmetric. So, the product is equivalent to the inner product between i-th row of A and the j-th of B.
The schoolbook matrix multiplication takes $2^{3 r}$ multiplications. Because $\boldsymbol{\Delta}(\boldsymbol{a}) \boldsymbol{\Delta}(\boldsymbol{b})$ is dyadic we only need the top row.

Standard Multiplication

```
input : }r\in\mathbb{N},n=\mp@subsup{2}{}{r}\mathrm{ and }a,b\in\mp@subsup{\mathbb{F}}{}{n
```



```
c\leftarrow(0,0,\ldots,0);
c}\leftarrow\mp@subsup{\mp@code{a}}{0}{}\mp@subsup{b}{0}{}
for }i\leftarrow1\mathrm{ to n-1 do
    co \leftarrowcco + a; b;
    i}\mp@subsup{}{(b)}{\leftarrow\mathrm{ binary representation of i;}
    for }j\leftarrow0\mathrm{ to }n-1\mathrm{ do
        j(b)}\leftarrow\mathrm{ binary representation of j;
        \pi
        \pi}\leftarrow\mathrm{ integer representation of }\mp@subsup{\pi}{}{(b)}\mathrm{ ;
        c
    end
end
return c;
```


Standard Multiplication

```
input : }r\in\mathbb{N},n=\mp@subsup{2}{}{r}\mathrm{ and }a,b\in\mp@subsup{\mathbb{F}}{}{n
```



```
c\leftarrow(0,0,\ldots,0);
c}\leftarrow\mp@subsup{\mp@code{a}}{0}{}\mp@subsup{b}{0}{}
for }i\leftarrow1\mathrm{ to }n-1\mathrm{ do
        co }\leftarrow\mp@subsup{c}{0}{}+\mp@subsup{a}{i}{}\mp@subsup{b}{i}{\prime}
        i}\mp@subsup{}{(b)}{\leftarrow\mathrm{ binary representation of i;}
        for }j\leftarrow0\mathrm{ to }n-1\mathrm{ do
            j(b)}\leftarrow\mathrm{ binary representation of j;
            \pi
            \pi}\leftarrow\mathrm{ integer representation of }\mp@subsup{\pi}{}{(b)}\mathrm{ ;
            c
    end
end
return c;
```

Complexity estimated in:

$$
C_{s t d}=r\left(2^{2 r}-2^{r}\right)+2^{2 r} C_{m u l}+\left(2^{2 r}-2^{r}\right) C_{\text {sum }}
$$

Dyadic Convolution

What is dyadic convolution?
The dyadic convolution of two vectors $a, b \in \mathbb{F}$, denoted by $a \Delta b$, is the unique vector of \mathbb{F} such that $\Delta(a \Delta b)=\boldsymbol{\Delta}(a) \Delta(b)$.

Sylvester-Hadamard Matrices

$$
\begin{aligned}
& \mathbf{H}_{0}=[1] \\
& \mathbf{H}_{r}=\left[\begin{array}{cc}
\mathbf{H}_{r-1} & \mathbf{H}_{r-1} \\
\mathbf{H}_{r-1} & -\mathbf{H}_{r-1}
\end{array}\right], r>0 .
\end{aligned}
$$

Dyadic Convolution

What do we achieve?
Computing c such that $\Delta(\mathrm{a}) \boldsymbol{\Delta}(\mathrm{b})=\boldsymbol{\Delta}(\mathrm{c})$ involves only three multiplications of vectors by Sylvester-Hadamard matrices.

Dyadic Convolution

What do we achieve?
Computing c such that $\boldsymbol{\Delta}(\mathrm{a}) \boldsymbol{\Delta}(\mathrm{b})=\boldsymbol{\Delta}(\mathrm{c})$ involves only three multiplications of vectors by Sylvester-Hadamard matrices.

For this we propose two algorithms. First, we need to compute $\mathbf{a H}_{r}$ where \mathbf{a} is a vector and \mathbf{H}_{r} a Sylvester-Hadamard matrix. Second, we perform the multiplication

Dyadic Convolution

```
input : }r\in\mathbb{N},n=\mp@subsup{2}{}{r}\mathrm{ and a }\in\mp@subsup{\mathbb{F}}{}{n
output: aH
v\leftarrow1;
for }j\leftarrow1\mathrm{ to }n\mathrm{ do
        w}\leftarrowv
        v\leftarrow(v<<<1);
        /* left shift by one position
        */
        for }i\leftarrow0\mathrm{ to }n-1\mathrm{ by v do
        for }l\leftarrow0\mathrm{ to }w\mathrm{ do
            s}\leftarrow\mp@subsup{a}{i+l}{\prime}
            q\leftarrowai+l+w;
            \mp@subsup{a}{i+1}{\prime}}\leftarrows+q
            ai+l+w}\leftarrows-q
        end
    end
end
return a;
```

Algorithm 1: The fast Walsh-Hadamard transform (FWHT)

Dyadic Convolution

```
input : }r\in\mathbb{N},n=\mp@subsup{2}{}{r}\mathrm{ and }\mathbf{a},\mathbf{b}\in\mp@subsup{\mathbb{F}}{}{n
output: a }\Delta\mathbf{b}\in\mp@subsup{\mathbb{F}}{}{n}\mathrm{ such that }\boldsymbol{\Delta}(\mathbf{a})\boldsymbol{\Delta}(\mathbf{b})=\boldsymbol{\Delta}(\mathbf{a}\Delta\mathbf{b}
c\leftarrow(0,0,\ldots,0);
c}\leftarrow(0,0,\ldots,0)
Compute \tilde{a}\leftarrow\mp@subsup{\textrm{aH}}{r}{}\mathrm{ via previous algorithm;}
Compute \tilde{b}\leftarrow\mp@subsup{\mathbf{bH}}{r}{}\mathrm{ via previous algorithm;}
for }j\leftarrow0\mathrm{ to }n-1\mathrm{ do
    \tilde{c}\leftarrow\mp@subsup{\tilde{a}}{j}{\prime}\mp@subsup{\tilde{b}}{j}{\prime};
end
Compute c}\leftarrow\tilde{c}\mp@subsup{\textrm{H}}{r}{}\mathrm{ via previous algorithm;
c\leftarrow(c>>r);
/* right shift by r positions */
return c;
```

Algorithm 2: Dyadic convolution via the FWHT

Karatsuba

Consider a vector a and its halves defined as:

$$
\begin{aligned}
& \mathbf{a}_{0}=\left[a_{0}, a_{1}, \cdots, a_{\frac{n}{2}-1}\right] \\
& \mathbf{a}_{1}=\left[a_{\frac{n}{2}}, a_{\frac{n}{2}+1}, \cdots, a_{n-1}\right] .
\end{aligned}
$$

Some straightforward computations show that the following relations hold:

$$
\begin{aligned}
& \mathbf{c}_{0}=\mathbf{a}_{0} \mathbf{b}_{0}+\mathbf{a}_{1} \mathbf{b}_{1} \\
& \mathbf{c}_{1}=\left(\mathbf{a}_{0}+\mathbf{a}_{1}\right)\left(\mathbf{b}_{0}+\mathbf{b}_{1}\right)+\mathbf{c}_{0}
\end{aligned}
$$

We can summarize the complexity of this method as:

$$
C_{\mathrm{Kar}}=3^{r} \cdot C_{\mathrm{mul}}+4 \cdot\left[3^{r}-2^{r}\right] \cdot C_{\mathrm{sum}}
$$

Dyadic Matrices Inverse

Inverse of dyadic matrices can be defined as:
The inverse $\boldsymbol{\Delta}(\mathbf{a})^{-1}$ is a dyadic matrix $\boldsymbol{\Delta}(\mathbf{b})$. We can compute \mathbf{b} as follows:

1. Compute $\tilde{\mathbf{b}}$ with $\operatorname{diag}(\tilde{\mathbf{b}})=\left[\operatorname{diag}\left(\mathbf{a H}_{r}\right)\right]^{-1}$;
2. Compute $\mathbf{b}^{\prime}=\tilde{\mathbf{b}} \mathbf{H}_{r}$;
3. For each entry in \mathbf{b}^{\prime} shift right r positions, the result is \mathbf{b}.

DAGS

Improving DAGS

Table: Cost of Multiplication between Dyadic Matrices

		Standard	Karatsuba	Dyadic Convolution
$\mathbb{F}_{2^{5}}$	$r=4$	4,833	2,194	3,899
	$r=5$	21,285	5,909	12,045
$\mathbb{F}_{2^{6}}$	$r=4$	5,833	2,194	4,899
	$r=5$	23,231	6,223	13,568

DAGS

Improving DAGS

Table: Comparison of Inversion Methods

	Original DAGS	LUP Inversion	LUP + Karatsuba
DAGS 1	$1,318,973,209$	321,771	108,117
DAGS 3	$2,211,076,311$	557,822	198,199
DAGS 5	$17,925,330,712$	654,713	431,890

Questions

Thank you for your attention. gustavo@cryptme.in

[^0]: ${ }^{1}$ Technische Universiteit Eindhoven, Netherlands
 ${ }^{2}$ University of Washington at Tacoma, USA
 ${ }^{3}$ Florida Atlantic University, USA
 ${ }^{4}$ Università Politecnica delle Marche, Italy

