Designing Efficient Dyadic Operations for Cryptographic Applications

Gustavo Banegas1, Paulo S. L. M. Barreto2, Edoardo Persichetti3 and Paolo Santini4

August 19, 2018

1Technische Universiteit Eindhoven, Netherlands
2University of Washington at Tacoma, USA
3Florida Atlantic University, USA
4Università Politecnica delle Marche, Italy
NIST proposals

November 2017: NIST posts 82 submissions from 260 people.

<table>
<thead>
<tr>
<th></th>
<th>Signatures</th>
<th>KEM/Encryption</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lattice-based</td>
<td>4</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Code-based</td>
<td>5</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>MQ-based</td>
<td>7</td>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>Hash-based</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Other</td>
<td>3</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>59</td>
<td>82</td>
</tr>
</tbody>
</table>
DAGS: Key Encapsulation from Dyadic GS Codes

- It is a code-based KEM;
- It uses Generalized Srivastava codes;
- It has short keys
DAGS: Key Encapsulation from Dyadic GS Codes

- It is a code-based KEM;
- It uses Generalized Srivastava codes;
- It has short keys, much smaller than Classic McEliece;
- As the name suggest it uses dyadic operations.
Introduction

What did we do?

- Improve code-based cryptographic schemes that use Quasi-Dyadic (QD) operations;
- Analyze the multiplication of dyadic matrices using: “Standard”, Karatsuba and Fast Walsh-Hadamard Transformation;
- Apply LUP decomposition to dyadic case.
What are dyadic matrices?

Given a ring \mathcal{R} and a vector $h = (h_0, h_1, \ldots, h_{n-1}) \in \mathcal{R}$ with $n = 2^r$, $r \in \mathbb{N}$, called the order.

A dyadic matrix is the symmetric matrix with components $\Delta_{ij} = h_i \oplus j$, where \oplus stands for bitwise exclusive-or.

We use $\Delta(h)$ to denote dyadic matrix.

The product of two dyadic matrices is a dyadic matrix.

Quasi-dyadic matrix

A quasi-dyadic matrix is a block matrix whose blocks are dyadic.
What are dyadic matrices?

Given a ring \mathcal{R} and a vector $h = (h_0, h_1, \ldots, h_{n-1}) \in \mathcal{R}$ with $n = 2^r, \ r \in \mathbb{N}$, called the order.

A dyadic matrix is the symmetric matrix with components $\Delta_{ij} = h_i \oplus j$, where \oplus stands for bitwise exclusive-or.

We use $\Delta(h)$ to denote dyadic matrix.

The product of two dyadic matrices is a dyadic matrix.

Quasi-dyadic matrix

A quasi-dyadic matrix is a block matrix whose blocks are dyadic.

In particular, we focus on the special case of quasi-dyadic matrices with elements belonging to a field \mathbb{F} of characteristic 2.
A dyadic permutation

A *dyadic permutation* is a dyadic matrix $\Pi^i \in \Delta(\{0, 1\}^n)$ given by $\Pi^i = \Delta(\pi^i)$ where π^i is the i-th unit vector.

Example

Suppose $n = 4$, and $i = 1$. So, we have $\pi^1 = (0, 1, 0, 0)$ and Π^1 is equal to:

$$
\Pi^1 = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{bmatrix}
$$
The element of a matrix \(C \) in position \((i, j)\) is obtained as the multiplication between the \(i\)-th row of \(A \) and the \(j\)-th column of \(B \).
Standard Multiplication

The element of a matrix C in position (i, j) is obtained as the multiplication between the i-th row of A and the j-th column of B. However, A and B are dyadic matrices and they are symmetric. So, the product is equivalent to the inner product between i-th row of A and the j-th of B.

The schoolbook matrix multiplication takes 2^{3r} multiplications. Because $\Delta(a)\Delta(b)$ is dyadic we only need the top row.
Standard Multiplication

input : \(r \in \mathbb{N}, \ n = 2^r \) and \(a, b \in \mathbb{F}^n \)
output: \(c \in \mathbb{F}^n \) such that \(\Delta(c) = \Delta(a)\Delta(b) \)
\(c \leftarrow (0, 0, \ldots, 0) \);
\(c_0 \leftarrow a_0b_0 \);
for \(i \leftarrow 1 \) to \(n - 1 \) do
 \(c_0 \leftarrow c_0 + a_ib_i \);
 \(i^{(b)} \leftarrow \text{binary representation of } i \);
 for \(j \leftarrow 0 \) to \(n - 1 \) do
 \(j^{(b)} \leftarrow \text{binary representation of } j \);
 \(\pi^{(b)} \leftarrow i^{(b)} \oplus j^{(b)} \);
 \(\pi \leftarrow \text{integer representation of } \pi^{(b)} \);
 \(c_i \leftarrow c_i + a_ib_\pi \);
 end
end
return \(c \);
Standard Multiplication

input: $r \in \mathbb{N}$, $n = 2^r$ and $a, b \in \mathbb{F}^n$

output: $c \in \mathbb{F}^n$ such that $\Delta(c) = \Delta(a)\Delta(b)$

$c \leftarrow (0, 0, \ldots, 0)$;

$c_0 \leftarrow a_0b_0$;

for $i \leftarrow 1$ to $n - 1$ do

\[c_0 \leftarrow c_0 + a_ib_i; \]

$i(b) \leftarrow$ binary representation of i;

for $j \leftarrow 0$ to $n - 1$ do

\[j(b) \leftarrow$ binary representation of $j; \]

\[\pi(b) \leftarrow i(b) \oplus j(b); \]

\[\pi \leftarrow$ integer representation of $\pi(b); \]

\[c_i \leftarrow c_i + a_ib_\pi; \]

end

end

return c;

Complexity estimated in:

\[C_{std} = r(2^{2r} - 2^r) + 2^{2r} C_{mul} + (2^{2r} - 2^r) C_{sum} \]
Dyadic Convolution

What is dyadic convolution?
The dyadic convolution of two vectors $a, b \in \mathbb{F}$, denoted by $a \triangle b$, is the unique vector of \mathbb{F} such that $\Delta(a \triangle b) = \Delta(a) \Delta(b)$.

Sylvester-Hadamard Matrices

$$H_0 = \begin{bmatrix} 1 \end{bmatrix},$$

$$H_r = \begin{bmatrix} H_{r-1} & H_{r-1} \\ H_{r-1} & -H_{r-1} \end{bmatrix}, \quad r > 0.$$
What do we achieve?
Computing c such that $\Delta(a)\Delta(b) = \Delta(c)$ involves only three multiplications of vectors by Sylvester-Hadamard matrices.
What do we achieve?
Computing \(c \) such that \(\Delta(a) \Delta(b) = \Delta(c) \) involves only three multiplications of vectors by Sylvester-Hadamard matrices.

For this we propose two algorithms. First, we need to compute \(aH_r \), where \(a \) is a vector and \(H_r \) a Sylvester-Hadamard matrix. Second, we perform the multiplication
Dyadic Convolution

input : $r \in \mathbb{N}$, $n = 2^r$ and $a \in \mathbb{F}^n$
output: aH_r
$v \leftarrow 1$
for $j \leftarrow 1$ to n do
 $w \leftarrow v$
 $v \leftarrow (v << 1)$;
 /* left shift by one position */
 for $i \leftarrow 0$ to $n - 1$ by v do
 for $l \leftarrow 0$ to w do
 $s \leftarrow a_{i+l}$;
 $q \leftarrow a_{i+l+w}$;
 $a_{i+l} \leftarrow s + q$;
 $a_{i+l+w} \leftarrow s - q$;
 end
 end
return a;

Algorithm 1: The fast Walsh-Hadamard transform (FWHT)
Dyadic Convolution

input: \(r \in \mathbb{N}, n = 2^r \) and \(a, b \in \mathbb{F}^n \)

output: \(a \triangledown b \in \mathbb{F}^n \) such that \(\Delta(a)\Delta(b) = \Delta(a \triangledown b) \)

\(c \leftarrow (0, 0, \ldots, 0); \)
\(\tilde{c} \leftarrow (0, 0, \ldots, 0); \)

Compute \(\tilde{a} \leftarrow aH_r \) via previous algorithm;

Compute \(\tilde{b} \leftarrow bH_r \) via previous algorithm;

for \(j \leftarrow 0 \) to \(n - 1 \) do
 \(\tilde{c} \leftarrow \tilde{a}_j\tilde{b}_j; \)
end

Compute \(c \leftarrow \tilde{c}H_r \) via previous algorithm;

\(c \leftarrow (c >> r); \)

/* right shift by \(r \) positions */

return \(c; \)

Algorithm 2: Dyadic convolution via the FWHT
Consider a vector \mathbf{a} and its halves defined as:

$$
\mathbf{a}_0 = \left[a_0, a_1, \cdots, a_{\frac{n}{2} - 1} \right]
$$
$$
\mathbf{a}_1 = \left[a_{\frac{n}{2}}, a_{\frac{n}{2} + 1}, \cdots, a_{n-1} \right].
$$

Some straightforward computations show that the following relations hold:

$$
\mathbf{c}_0 = \mathbf{a}_0 \mathbf{b}_0 + \mathbf{a}_1 \mathbf{b}_1
$$
$$
\mathbf{c}_1 = (\mathbf{a}_0 + \mathbf{a}_1)(\mathbf{b}_0 + \mathbf{b}_1) + \mathbf{c}_0
$$

We can summarize the complexity of this method as:

$$
C_{\text{Kar}} = 3^r \cdot C_{\text{mul}} + 4 \cdot [3^r - 2^r] \cdot C_{\text{sum}}
$$
Dyadic Matrices Inverse

Inverse of dyadic matrices can be defined as:
The inverse $\Delta(a)^{-1}$ is a dyadic matrix $\Delta(b)$. We can compute b as follows:

1. Compute \tilde{b} with $\text{diag}(\tilde{b}) = [\text{diag}(aH_r)]^{-1}$;
2. Compute $b' = \tilde{b}H_r$;
3. For each entry in b' shift right r positions, the result is b.
Improving DAGS

Table: Cost of Multiplication between Dyadic Matrices

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Karatsuba</th>
<th>Dyadic Convolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{F}_{2^5}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r = 4$</td>
<td>4,833</td>
<td>2,194</td>
<td>3,899</td>
</tr>
<tr>
<td>$r = 5$</td>
<td>21,285</td>
<td>5,909</td>
<td>12,045</td>
</tr>
<tr>
<td>\mathbb{F}_{2^6}</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$r = 4$</td>
<td>5,833</td>
<td>2,194</td>
<td>4,899</td>
</tr>
<tr>
<td>$r = 5$</td>
<td>23,231</td>
<td>6,223</td>
<td>13,568</td>
</tr>
</tbody>
</table>
Improving DAGS

Table: Comparison of Inversion Methods

<table>
<thead>
<tr>
<th></th>
<th>Original DAGS</th>
<th>LUP Inversion</th>
<th>LUP + Karatsuba</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAGS 1</td>
<td>1,318,973,209</td>
<td>321,771</td>
<td>108,117</td>
</tr>
<tr>
<td>DAGS 3</td>
<td>2,211,076,311</td>
<td>557,822</td>
<td>198,199</td>
</tr>
<tr>
<td>DAGS 5</td>
<td>17,925,330,712</td>
<td>654,713</td>
<td>431,890</td>
</tr>
</tbody>
</table>
Questions

Thank you for your attention.
gustavo@cryptme.in