Selected Constructive and Destructive Approaches to Post-Quantum Cryptography

Gustavo Souza Banegas

Technische Universiteit Eindhoven gustavo@cryptme.in

November 12, 2019

Cryptography 101

Cryptography 101

Quantum Computer and Quantum Algorithms

Quantum Computer and Quantum Algorithms

Quantum computers mean cryptography needs to change, and soon

As guantum computing gains momentum with practical guantum computers due to come online as early as next year, concerns about post-quantum cryptography are pushed to the forefront.

INNOVATION

How Peter Shor's Algorithm Dooms RSA **Encryption to Failure**

In 1994, Peter Shor created an algorithm for a theorical computer that solved a nearly impossible problem. Now that technology is catching up, Shor's algorithm guarantees the end to RSA Encryption.

Defense Against Committee

Defense Against Committee

Is this enough to make cryptography secure?

Is this enough to make cryptography secure?

Is this enough to make cryptography secure?

- Evaluate the current cryptoschemes for mistakes;
- Check if the current parameters are secure;
- Use quantum cryptanalysis:
 - Check how to use quantum algorithms;
 - Estimate how big a quantum computer needs to be to run a quantum algorithm;
 - Develop new quantum algorithms.

Defense Against Committee

Defense Against Committee

Selected Constructive and Destructive Approaches to Post-Quantum Cryptography

Gustavo Souza Banegas

Technische Universiteit Eindhoven gustavo@cryptme.in

November 12, 2019

