Multi-target Preimage search using parallel Grover

Gustavo Banegas ${ }^{1}$ and Daniel J. Bernstein ${ }^{1,2}$ $\mathrm{TU} / \mathrm{e}=$

ECRYPT-NET Meeting

October 11th, 2017

[^0]Introduction

Reversibility

Finding t-images

Example

Conclusion

What's next?

Introduction

Preimage

Let H be a function that $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$. Preimage search is given an output y, find a x such that $H(x)=y$.

Introduction

Preimage

Let H be a function that $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$. Preimage search is given an output y, find a x such that $H(x)=y$.
It is desirable that given an output it should be computationally infeasible to find any input that maps to that output.

Introduction

Brute-force search for one preimage

 Let H be a function that $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$.The brute force is to check every input x given an output y. The time complexity will be 2^{b} guesses using classical computers. If we apply Grover's algorithm, using a quantum computer, the complexity decreases to $2^{b / 2}$ guesses.

Introduction

Brute-force search for multi target preimages
Let H be a function that $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$.
Now, we have a set of output y 's, i.e., $Y=\left\{y_{1}, y_{2}, \ldots, y_{t}\right\}$ and we want to find one y_{i} and we verify every input x with a set of output Y.
If we ignore several costs, the complexity decreases to $2^{b} / t$ guesses in a classical computer.
If we apply Grover's algorithm, using a quantum computer, the complexity decreases to $2^{b / 2} / t^{1 / 2}$ guesses.

Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

- Classical computer:
- Single target: 2^{b}
- Multi target: $t \cdot\left(2^{b}\right) / t$

Introduction

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

- Classical computer:
- Single target: 2^{b}
- Multi target: $t \cdot\left(2^{b}\right) / t$
- Quantum computer:
- Single target: $2^{b / 2}$
- Multi target: $t \cdot\left(2^{b / 2}\right) / t^{1 / 2}$

Introduction

Parallel multi-target image attack for AES:

DEFUSE
Whisiremmommanavon

Introduction

Parallel multi-target image attack for AES:

van Oorschot-Wiener "parallel rho method"

Introduction

Parallel multi-target image attack for AES:

van Oorschot-Wiener "parallel rho method"

- It uses a mesh of p small processors.

Introduction

Parallel multi-target image attack for AES:

van Oorschot-Wiener "parallel rho method"

- It uses a mesh of p small processors.
- Each processor runs $2^{128} / p t$ fast steps, to find one of t independent AES keys k_{1}, \ldots, k_{t}, using a fixed plain text, e.g, AES(0).

Introduction

Parallel multi-target image attack for AES:

van Oorschot-Wiener "parallel rho method"

- It uses a mesh of p small processors.
- Each processor runs $2^{128} / p t$ fast steps, to find one of t independent AES keys k_{1}, \ldots, k_{t}, using a fixed plain text, e.g, AES(0).

However, it is pre-quantum.

Introduction

Is AES-128 secure against quantum attacks? NIST has claimed that AES-128 is secure enough.

Introduction

Is AES-128 secure against quantum attacks? NIST has claimed that AES-128 is secure enough.

Introduction - Parallel rho method

Distinguished Point
Consider $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$
Take x an input of $H, x^{\prime}=H(x)$.
Thereafter, take x^{\prime} and apply H again, $x^{\prime \prime}=H\left(x^{\prime}\right)$.
It is possible to do it n times and we denote as $H^{n}(x)$.

Introduction - Parallel rho method

Distinguished Point

Consider $H:\{0,1\}^{b} \rightarrow\{0,1\}^{b}$
We want that our distinguished point satisfied $d=b / 2$ and we denote as:

$$
H_{d}(x)=\underbrace{0 \ldots 0}_{d \text { zeros }}\{0,1\}^{b / 2}
$$

Introduction - Parallel rho method

Distinguished Point

Overview

Oracle
 calls

$$
\begin{array}{cc}
p \text { small } & p \text { small } \\
\text { processors, } & \text { processors, } \\
\text { free } & \text { realistic }
\end{array}
$$ communication communication

Overview

Oracle
 calls

$$
\begin{array}{cc}
p \text { small } & p \text { small } \\
\text { processors, } & \text { processors, } \\
\text { free } & \text { realistic }
\end{array}
$$ communication communication

Distinguished point in quantum setting

Distinguished point in quantum computers

- The operations in quantum computer must be reversible;

Distinguished point in quantum setting

Distinguished point in quantum computers

- The operations in quantum computer must be reversible;
- It is not possible to design a "simple circuit" for distinguished point;

Distinguished point in quantum setting

Distinguished point in quantum computers

- The operations in quantum computer must be reversible;
- It is not possible to design a "simple circuit" for distinguished point;
- The sorting needs to be reversible too.

TARGETED ATTACK

FIRE THE FAT-HAMSTER CROSSBOW

Distinguished point in quantum setting

Using classical computers
Example to compute $H^{3}(x)$:

Distinguished point in quantum setting

Using classical computers
Example to compute $H^{3}(x)$:

$$
\text { time 0: } x \quad 0 \quad 0
$$

Distinguished point in quantum setting

Using classical computers
Example to compute $H^{3}(x)$:

time 0:	x	0	0
time 1:	x	0	$H(x)$

Distinguished point in quantum setting

Using classical computers
Example to compute $H^{3}(x)$:

time 0:	x	0	0
time 1:	x	0	$H(x)$
time 2:	x	0	$H^{2}(x)$

Distinguished point in quantum setting

Using classical computers
Example to compute $H^{3}(x)$:

time 0:	x	0	0
time 1:	x	0	$H(x)$
time 2:	x	0	$H^{2}(x)$
time 3:	x	$H^{3}(x)$	$H^{2}(x)$

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:
time 0 :
x
0
0
0

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:

time 0:	x	0	0	0
time 1:	x	0	$H(x)$	0

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:

time 0:	x	0	0	0
time 1:	x	0	$H(x)$	0
time 2:	x	0	$H(x)$	$H^{2}(x)$

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:

time 0:	x	0	0	0
time 1:	x	0	$H(x)$	0
time 2:	x	0	$H(x)$	$H^{2}(x)$
time 3:	x	$H^{3}(x)$	$H(x)$	$H^{2}(x)$

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:

time 0:	x	0	0	0
time 1:	x	0	$H(x)$	0
time 2:	x	0	$H(x)$	$H^{2}(x)$
time 3:	x	$H^{3}(x)$	$H(x)$	$H^{2}(x)$
time 4:	x	$H^{3}(x)$	$H(x)$	0

Distinguished point in quantum setting

Trade-off from Bennett-Tompa
Example to compute $H^{3}(x)$:

time 0:	x	0	0	0
time 1:	x	0	$H(x)$	0
time 2:	x	0	$H(x)$	$H^{2}(x)$
time 3:	x	$H^{3}(x)$	$H(x)$	$H^{2}(x)$
time 4:	x	$H^{3}(x)$	$H(x)$	0
time 5:	x	$H^{3}(x)$	0	0

$H_{d}^{n}(x)=$

$H_{d}^{n}\left(y_{i}\right) \xrightarrow{?} H_{d}^{n}\left(x_{j}\right)$

If this condition is true then we need to run classically:

$$
H^{n_{k}}\left(x_{i}\right)=y_{j}
$$

Reversibility

Reversibility of Distinguished point

- Bennett-Tompa technique to build a reversible circuit for H_{d}^{n};
- It is possible to achieve $a+O\left(b \log _{2} n\right)$ ancillas and gate depth $O\left(g n^{1+\epsilon}\right)$.

[^1]
Reversibility

Reversibility of Distinguished point

- Bennett-Tompa technique to build a reversible circuit for H_{d}^{n};
- It is possible to achieve $a+O\left(b \log _{2} n\right)$ ancillas and gate depth $O\left(g n^{1+\epsilon}\right)$.

Reversibility of sorting on a mesh network

- Using the sorting strategy from "Efficient distributed quantum computing" ${ }^{3}$;
- We used odd-even mergesort;
- It is possible to perform the sorting of t elements using $O\left(t\left(b+(\log t)^{2}\right)\right)$ ancillas and $O\left(t^{1 / 2}(\log t)^{2}\right)$ steps.

[^2]
Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.
- Sort the chain ends for x_{1}, \ldots, x_{t} and the chain ends for y_{1}, \ldots, y_{t}.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.
- Sort the chain ends for x_{1}, \ldots, x_{t} and the chain ends for y_{1}, \ldots, y_{t}.
- If there is a collision, say a collision between the chain end for x_{i} and the chain end for y_{j} : recompute the chain for x_{i}, checking each chain element to see whether it is a preimage for y_{j}.

Finding t-images

Fix images y_{1}, \ldots, y_{t}. We build a reversible circuit that performs the following operations:

- Input a vector $\left(x_{1}, \ldots, x_{t}\right)$.
- Compute, in parallel, the chain ends for x_{1}, \ldots, x_{t} : i.e., $H_{d}^{n}\left(x_{1}\right), \ldots, H_{d}^{n}\left(x_{t}\right)$.
- Precompute the chain ends for y_{1}, \ldots, y_{t}.
- Sort the chain ends for x_{1}, \ldots, x_{t} and the chain ends for y_{1}, \ldots, y_{t}.
- If there is a collision, say a collision between the chain end for x_{i} and the chain end for y_{j} : recompute the chain for x_{i}, checking each chain element to see whether it is a preimage for y_{j}.
- Output 0 if a preimage was found, otherwise 1.

Example

- Imagine AES-128;

Example

- Imagine AES-128;
- Consider $t=2^{40}$ and $p=2^{40}$, for this example.

Example

- Imagine AES-128;
- Consider $t=2^{40}$ and $p=2^{40}$, for this example.
- The probability to find is roughly $t^{5 / 2} / N$; For our example: $\left(2^{40}\right)^{5 / 2} / 2^{128} \approx 2^{-28}$.

Example

- Imagine AES-128;
- Consider $t=2^{40}$ and $p=2^{40}$, for this example.
- The probability to find is roughly $t^{5 / 2} / N$; For our example: $\left(2^{40}\right)^{5 / 2} / 2^{128} \approx 2^{-28}$.
- Each processor is going to use $\sqrt{N / p t^{3 / 2}}$ iterations;
- $\sqrt{2^{128} / 2^{40}\left(2^{40}\right)^{3 / 2}} \approx \sqrt{2^{128} / 2^{100}}$

Example

- Imagine AES-128;
- Consider $t=2^{40}$ and $p=2^{40}$, for this example.
- The probability to find is roughly $t^{5 / 2} / N$; For our example: $\left(2^{40}\right)^{5 / 2} / 2^{128} \approx 2^{-28}$.
- Each processor is going to use $\sqrt{N / p t^{3 / 2}}$ iterations;
- $\sqrt{2^{128} / 2^{40}\left(2^{40}\right)^{3 / 2}} \approx \sqrt{2^{128} / 2^{100}}$
$=\sqrt{2^{28}}=2^{14}$ iterations.

Conclusion

Conclusion:

- Circuit uses $O\left(a+t b+t(\log t)^{2}\right)$ ancillas;
- Depth of $O\left(\sqrt{N / p t^{1 / 2}}\left(g t^{\epsilon / 2}+(\log t)^{2} \log b\right)\right)$;
- Approximately $\sqrt{N / p t^{3 / 2}}$ iterations.
- Create the circuit using quantum simulator for AES;
- We already implemented using libquantum; One round of AES with 11, 100 gates;
${ }^{4}$ (libquantum instead of LiQUi \rangle);

[^3]
Outreach

- This work was at SAC 2017;
- We gave a talk at CWG (Crypto working group) reaching the Dutch community;
- We gave a talk at Quantum Cryptanalysis Seminar in Dagstuhl (Reaching the scientific community);
- Ei/ ψ - Security in times of surveillance (General Public);

What's next?

- Check for the real number of qubits/gates giving an implementation;
- Change libquantum for "Big Integer";
- Implement the work from "Quantum resources estimates for ECC" ${ }^{5}$;
- Finish the side channel attacks on ECC (work with Riscure);
- Quantum Research Retreat (QRR) in Eindhoven (mid December, https://cryptme.in/events/);

[^4]
Questions

Thank you for your attention. Questions?

gustavo@cryptme.in

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science Technische Universiteit Eindhoven gustavo@cryptme.in
 ${ }^{2}$ Department of Computer Science
 University of Illinois at Chicago djb@cr.yp.to

[^1]: ${ }^{3}$ Efficient distributed quantum computing
 Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark

[^2]: ${ }^{3}$ Efficient distributed quantum computing
 Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark

[^3]: ${ }^{4}$ Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

[^4]: ${ }^{5}$ Quantum resource estimates for computing elliptic curve discrete logarithms
 Martin Roetteler, Michael Naehrig, Krysta M. Svore, Kristin Lauter

