Multi-target Preimage search using parallel Grover

Gustavo Banegas¹ and Daniel J. Bernstein^{1,2} TU/e Technische Universiteit Eindhoven University of Technology

ECRYPT-NET Meeting October 11th, 2017

¹Department of Mathematics and Computer Science Technische Universiteit Eindhoven gustavo@cryptme.in ²Department of Computer Science University of Illinois at Chicago djb@cr.yp.to

Reversibility

Finding *t*-images

Example

Conclusion

What's next?

Preimage

Let *H* be a function that $H : \{0, 1\}^b \to \{0, 1\}^b$. Preimage search is given an output *y*, find a *x* such that H(x) = y.

Preimage

Let *H* be a function that $H : \{0,1\}^b \to \{0,1\}^b$. Preimage search is given an output *y*, find a *x* such that H(x) = y. It is desirable that given an output it should be computationally infeasible to find any input that maps to that output.

Brute-force search for one preimage

Let *H* be a function that $H: \{0,1\}^b \to \{0,1\}^b$.

The brute force is to check every input x given an output y. The time complexity will be 2^b guesses using classical computers. If we apply Grover's algorithm, using a quantum computer, the complexity decreases to $2^{b/2}$ guesses.

Brute-force search for multi target preimages

Let *H* be a function that $H: \{0,1\}^b \to \{0,1\}^b$.

Now, we have a set of output y's, i.e., $Y = \{y_1, y_2, \dots, y_t\}$ and we want to find one y_i and we verify every input x with a set of output Y.

If we **ignore several costs**, the complexity decreases to $2^b/t$ guesses in a classical computer.

If we apply Grover's algorithm, using a quantum computer, the complexity decreases to $2^{b/2}/t^{1/2}$ guesses.

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

- Classical computer:
 - ► Single target: 2^b
 - Multi target: $t \cdot (2^b)/t$

Costs for comparison

One big cost for preimage search in both cases is the comparisons.

- Classical computer:
 - ► Single target: 2^b
 - Multi target: $t \cdot (2^b)/t$
- Quantum computer:
 - ► Single target: 2^{b/2}
 - Multi target: $t \cdot (2^{b/2})/t^{1/2}$

Parallel multi-target image attack for AES:

Parallel multi-target image attack for AES:

van Oorschot–Wiener "parallel rho method"

Parallel multi-target image attack for AES:

van Oorschot–Wiener "parallel rho method"

It uses a mesh of p small processors.

Parallel multi-target image attack for AES:

van Oorschot–Wiener "parallel rho method"

- It uses a mesh of p small processors.
- Each processor runs 2¹²⁸/pt fast steps, to find one of t independent AES keys k₁,..., k_t, using a fixed plain text, e.g, AES(0).

Parallel multi-target image attack for AES:

van Oorschot–Wiener "parallel rho method"

- It uses a mesh of p small processors.
- Each processor runs 2¹²⁸/pt fast steps, to find one of t independent AES keys k₁,..., k_t, using a fixed plain text, e.g, AES(0).

However, it is pre-quantum.

Is AES-128 secure against quantum attacks? NIST has claimed that AES-128 is secure enough.

Is AES-128 secure against quantum attacks? NIST has claimed that AES-128 is secure enough.

Introduction - Parallel rho method

Distinguished Point

Consider $H : \{0, 1\}^b \to \{0, 1\}^b$ Take x an input of H, x' = H(x). Thereafter, take x' and apply H again, x'' = H(x'). It is possible to do it n times and we denote as $H^n(x)$.

Introduction - Parallel rho method

Distinguished Point

Consider $H: \{0,1\}^b \to \{0,1\}^b$ We want that our distinguished point satisfied d = b/2 and we denote as:

$$H_d(x) = \underbrace{0\ldots0}_{d \text{ zeros}} \{0,1\}^{b/2}$$

Introduction - Parallel rho method

Distinguished Point

13/24

Distinguished point in quantum setting Distinguished point in quantum computers

> The operations in quantum computer must be reversible;

Distinguished point in quantum setting Distinguished point in quantum computers

- > The operations in quantum computer must be reversible;
- It is not possible to design a "simple circuit" for distinguished point;

Distinguished point in quantum setting Distinguished point in quantum computers

- > The operations in quantum computer must be reversible;
- It is not possible to design a "simple circuit" for distinguished point;
- The sorting needs to be reversible too.

Using classical computers Example to compute $H^3(x)$:

Using classical computers Example to compute $H^3(x)$:

time 0: x 0 0

Using classical computers Example to compute $H^3(x)$:

time 0: x 0 0 time 1: x 0 H(x)

Using classical computers Example to compute $H^3(x)$:

time 0:	X	0	0
time 1:	x	0	H(x)
time 2:	x	0	$H^2(x)$

Using classical computers Example to compute $H^3(x)$:

time 0:	X	0	0
time 1:	x	0	H(x)
time 2:	X	0	$H^2(x)$
time 3:	X	$H^3(x)$	$H^2(x)$

time 0: x 0 0 0

time 0:
$$x$$
 0 0 0
time 1: x 0 $H(x)$ 0

time 0:	X	0	0	0
time 1:	x	0	H(x)	0
time 2:	x	0	H(x)	$H^2(x)$

time 0:	X	0	0	0
time 1:	X	0	H(x)	0
time 2:	X	0	H(x)	$H^2(x)$
time 3:	x	$H^3(x)$	H(x)	$H^2(x)$

time 0:	X	0	0	0
time 1:	x	0	H(x)	0
time 2:	x	0	H(x)	$H^2(x)$
time 3:	x	$H^3(x)$	H(x)	$H^2(x)$
time 4:	x	$H^3(x)$	H(x)	0

 $H^n_d(y_i) \stackrel{\scriptscriptstyle{?}}{=} H^n_d(x_i)$

If this condition is true then we need to run classically:

$$H^{n_k}(x_i) = y_j$$

Reversibility

Reversibility of Distinguished point

- Bennett-Tompa technique to build a reversible circuit for H_d^n ;
- It is possible to achieve a + O(b log₂ n) ancillas and gate depth O(gn^{1+ϵ}).

³Efficient distributed quantum computing Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark

Reversibility

Reversibility of Distinguished point

- Bennett-Tompa technique to build a reversible circuit for H_d^n ;
- It is possible to achieve a + O(b log₂ n) ancillas and gate depth O(gn^{1+ϵ}).

Reversibility of sorting on a mesh network

- Using the sorting strategy from "Efficient distributed quantum computing"³;
- We used odd-even mergesort;
- It is possible to perform the sorting of t elements using O(t(b + (log t)²)) ancillas and O(t^{1/2}(log t)²) steps.

³Efficient distributed quantum computing Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W. and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark

Fix images y_1, \ldots, y_t . We build a reversible circuit that performs the following operations:

• Input a vector (x_1, \ldots, x_t) .

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .
- Sort the chain ends for x_1, \ldots, x_t and the chain ends for y_1, \ldots, y_t .

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .
- ► Sort the chain ends for x₁,..., x_t and the chain ends for y₁,..., y_t.
- ► If there is a collision, say a collision between the chain end for x_i and the chain end for y_j: recompute the chain for x_i, checking each chain element to see whether it is a preimage for y_j.

- Input a vector (x_1, \ldots, x_t) .
- Compute, in parallel, the chain ends for x_1, \ldots, x_t : i.e., $H_d^n(x_1), \ldots, H_d^n(x_t)$.
- Precompute the chain ends for y_1, \ldots, y_t .
- ► Sort the chain ends for x₁,..., x_t and the chain ends for y₁,..., y_t.
- ► If there is a collision, say a collision between the chain end for x_i and the chain end for y_j: recompute the chain for x_i, checking each chain element to see whether it is a preimage for y_j.
- Output 0 if a preimage was found, otherwise 1.

► Imagine AES-128;

- Imagine AES-128;
- Consider $t = 2^{40}$ and $p = 2^{40}$, for this example.

- Imagine AES-128;
- Consider $t = 2^{40}$ and $p = 2^{40}$, for this example.
- ► The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{40})^{5/2}/2^{128} \approx 2^{-28}$.

- Imagine AES-128;
- Consider $t = 2^{40}$ and $p = 2^{40}$, for this example.
- ► The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{40})^{5/2}/2^{128} \approx 2^{-28}$.
- Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations;

•
$$\sqrt{2^{128}/2^{40}(2^{40})^{3/2}} \approx \sqrt{2^{128}/2^{100}}$$

- Imagine AES-128;
- Consider $t = 2^{40}$ and $p = 2^{40}$, for this example.
- ► The probability to find is roughly $t^{5/2}/N$; For our example: $(2^{40})^{5/2}/2^{128} \approx 2^{-28}$.
- Each processor is going to use $\sqrt{N/pt^{3/2}}$ iterations;

•
$$\sqrt{2^{128}/2^{40}(2^{40})^{3/2}} \approx \sqrt{2^{128}/2^{100}}$$

= $\sqrt{2^{28}} = 2^{14}$ iterations.

Conclusion

Conclusion:

- Circuit uses $O(a + tb + t(\log t)^2)$ ancillas;
- Depth of $O(\sqrt{N/pt^{1/2}}(gt^{\epsilon/2} + (\log t)^2 \log b));$
- Approximately $\sqrt{N/pt^{3/2}}$ iterations.
- Create the circuit using quantum simulator for AES;
 - We already implemented using libquantum; One round of AES with 11, 100 gates;
 - ⁴ (libquantum instead of LiQUi $|\rangle$);

⁴Applying Grover's algorithm to AES: quantum resource estimates Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and Steinwandt, Rainer

Outreach

- This work was at SAC 2017;
- We gave a talk at CWG (Crypto working group) reaching the Dutch community;
- We gave a talk at Quantum Cryptanalysis Seminar in Dagstuhl (Reaching the scientific community);
- Ei/ψ Security in times of surveillance (General Public);

What's next?

- Check for the real number of qubits/gates giving an implementation;
- Change libquantum for "Big Integer";
- Implement the work from "Quantum resources estimates for ECC"⁵;
- Finish the side channel attacks on ECC (work with Riscure);
- Quantum Research Retreat (QRR) in Eindhoven (mid December, https://cryptme.in/events/);

⁵Quantum resource estimates for computing elliptic curve discrete logarithms Martin Roetteler, Michael Naehrig, Krysta M. Svore, Kristin Lauter

Questions

gustavo@cryptme.in