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Introduction

Preimage
Let H be a function that H : {0, 1}b → {0, 1}b. Preimage search is
given an output y , find a x such that H(x) = y .

It is desirable that given an output it should be computationally
infeasible to find any input that maps to that output.
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Introduction

Brute-force search for one preimage
Let H be a function that H : {0, 1}b → {0, 1}b.
The brute force is to check every input x given an output y . The
time complexity will be 2b guesses using classical computers.
If we apply Grover’s algorithm, using a quantum computer, the
complexity decreases to 2b/2 guesses.
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Introduction

Brute-force search for multi target preimages
Let H be a function that H : {0, 1}b → {0, 1}b.
Now, we have a set of output y ’s, i.e., Y = {y1, y2, . . . , yt} and we
want to find one yi and we verify every input x with a set of output
Y .
If we ignore several costs, the complexity decreases to 2b/t
guesses in a classical computer.
If we apply Grover’s algorithm, using a quantum computer, the
complexity decreases to 2b/2/t1/2 guesses.
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Introduction

Costs for comparison
One big cost for preimage search in both cases is the comparisons.

I Classical computer:
I Single target: 2b
I Multi target: t · (2b)/t

I Quantum computer:
I Single target: 2b/2
I Multi target: t · (2b/2)/t1/2
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Introduction
Parallel multi-target image attack for AES:

van Oorschot–Wiener “parallel
rho method”

I It uses a mesh of p small
processors.

I Each processor runs 2128/pt
fast steps, to find one of t
independent AES keys
k1, . . . , kt , using a fixed
plain text, e.g, AES(0).

However, it is pre-quantum.
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Introduction

Is AES−128 secure against quantum attacks?
NIST has claimed that AES-128 is secure enough.
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Introduction - Parallel rho method

Distinguished Point
Consider H : {0, 1}b → {0, 1}b
Take x an input of H, x ′ = H(x).
Thereafter, take x ′ and apply H again, x ′′ = H(x ′).
It is possible to do it n times and we denote as Hn(x).
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Introduction - Parallel rho method

Distinguished Point
Consider H : {0, 1}b → {0, 1}b
We want that our distinguished point satisfied d = b/2 and we
denote as:

Hd(x) = 0 . . . 0︸ ︷︷ ︸
d zeros

{0, 1}b/2
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Introduction - Parallel rho method

Distinguished Point
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Distinguished point in quantum setting
Distinguished point in quantum computers

I The operations in quantum computer must be reversible;

I It is not possible to design a “simple circuit” for distinguished
point;

I The sorting needs to be
reversible too.
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Distinguished point in quantum setting

Using classical computers
Example to compute H3(x):

time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x H3(x) H2(x)
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Distinguished point in quantum setting
Trade-off from Bennett–Tompa
Example to compute H3(x):

time 0: x 0 0 0
time 1: x 0 H(x) 0
time 2: x 0 H(x) H2(x)
time 3: x H3(x) H(x) H2(x)
time 4: x H3(x) H(x) 0
time 5: x H3(x) 0 0

Hn
d (x) =

Input:  x ∊ {0,1}b

H(x)

Output:  bit string with the DP of x

Check for 
d zeros

No

Yes

Copy of 
DP

Compute 
2d+1 times.
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Reversibility

Reversibility of Distinguished point

I Bennett-Tompa technique to build a reversible circuit for Hn
d ;

I It is possible to achieve a+O(b log2 n) ancillas and gate depth
O(gn1+ε).

Reversibility of sorting on a mesh network

I Using the sorting strategy from “Efficient distributed quantum
computing”3;

I We used odd-even mergesort;
I It is possible to perform the sorting of t elements using

O(t(b + (log t)2)) ancillas and O(t1/2(log t)2) steps.

3Efficient distributed quantum computing
Beals, Robert and Brierley, Stephen and Gray, Oliver and Harrow, Aram W.
and Kutin, Samuel and Linden, Noah and Shepherd, Dan and Stather, Mark
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Finding t-images

Fix images y1, . . . , yt . We build a reversible circuit that performs
the following operations:

I Input a vector (x1, . . . , xt).

I Compute, in parallel, the chain ends for x1, . . . , xt : i.e.,
Hn
d (x1), . . . ,H

n
d (xt).

I Precompute the chain ends for y1, . . . , yt .
I Sort the chain ends for x1, . . . , xt and the chain ends for

y1, . . . , yt .
I If there is a collision, say a collision between the chain end for

xi and the chain end for yj : recompute the chain for xi ,
checking each chain element to see whether it is a preimage
for yj .

I Output 0 if a preimage was found, otherwise 1.

19 / 24
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Example

I Imagine AES−128;

I Consider t = 240 and p = 240, for this example.
I The probability to find is roughly t5/2/N; For our example:

(240)5/2/2128 ≈ 2−28.
I Each processor is going to use

√
N/pt3/2 iterations;

I
√

2128/240(240)3/2 ≈
√

2128/2100

=
√
228 = 214 iterations.
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Conclusion

Conclusion:
I Circuit uses O(a+ tb + t(log t)2) ancillas;
I Depth of O(

√
N/pt1/2(gtε/2 + (log t)2 log b));

I Approximately
√
N/pt3/2 iterations.

I Create the circuit using quantum simulator for AES;
I We already implemented using libquantum; One round of AES

with 11, 100 gates;
4 (libquantum instead of LiQUi |〉);

4Applying Grover’s algorithm to AES: quantum resource estimates
Grassl, Markus and Langenberg, Brandon and Roetteler, Martin and
Steinwandt, Rainer
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Outreach

I This work was at SAC 2017;
I We gave a talk at CWG (Crypto working group) reaching the

Dutch community;
I We gave a talk at Quantum Cryptanalysis Seminar in Dagstuhl

(Reaching the scientific community);
I Ei/ψ - Security in times of surveillance (General Public);
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What’s next?
I Check for the real number of qubits/gates giving an

implementation;
I Change libquantum for “Big Integer”;
I Implement the work from “Quantum resources estimates for

ECC”5;
I Finish the side channel attacks on ECC (work with Riscure);

I Quantum Research Retreat
(QRR) in Eindhoven (mid
December,
https://cryptme.in/events/);

5Quantum resource estimates for computing elliptic curve discrete
logarithms
Martin Roetteler, Michael Naehrig, Krysta M. Svore, Kristin Lauter
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Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
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