DAGS - KEY ENCAPSULATION FROM DYADIC GS CODES

Gustavo Banegas ${ }^{1}$, Paulo S. L. M. Barreto, Brice Odilon Boidje, Pierre-Louis Cayrel, Gilbert Ndollane Dione, Kris Gaj, Cheikh Thiécoumba Gueye, Richard Haeussler, Jean Belo Klamti, Ousmane N'diaye, Duc Tri Nguyen, Edoardo Persichetti and Jefferson E.

Ricardini
https://www.dags-project.org
TU/e

March 20, 2018

[^0]Structured Codes

DAGS - KEM

Code-based cryptography

- McEliece: first cryptosystem using error correcting codes (1978); Based on the hardness of decoding random linear codes.

Computational Syndrome Decoding
Given: $H \in \mathbb{F}_{q}^{(n-k) \times n}, y \in \mathbb{F}_{q}^{(n-k)}$ and $\omega \in \mathbb{N}$.
Goal: find a word $e \in \mathbb{F}_{q}^{n}$ with $w t(e) \leq \omega$ such that $H e^{T}=y$.

Code-based cryptography

- McEliece: first cryptosystem using error correcting codes (1978); Based on the hardness of decoding random linear codes.

Computational Syndrome Decoding
Given: $H \in \mathbb{F}_{q}^{(n-k) \times n}, y \in \mathbb{F}_{q}^{(n-k)}$ and $\omega \in \mathbb{N}$.
Goal: find a word $e \in \mathbb{F}_{q}^{n}$ with $w t(e) \leq \omega$ such that $\mathrm{He}^{T}=y$.

- Unique solution and hardness only if ω is below a certain threshold (GV bound).

"fast" Code-based cryptography 101

Key Generation:

- Choose ω-error correcting code \mathcal{C};
- SK: code description Δ for \mathcal{C};
- PK: generator matrix G in systematic form for \mathcal{C}.

"fast" Code-based cryptography 101

Key Generation:

- Choose ω-error correcting code \mathcal{C};
- SK: code description Δ for \mathcal{C};
- PK: generator matrix G in systematic form for \mathcal{C}.

Encryption:

- Message is a word $m \in \mathbb{F}_{q^{m}}^{k}$;
- Select random error vector $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω;
- $c=m G+e$.

"fast" Code-based cryptography 101

Key Generation:

- Choose ω-error correcting code \mathcal{C};
- SK: code description Δ for \mathcal{C};
- PK: generator matrix G in systematic form for \mathcal{C}.

Encryption:

- Message is a word $m \in \mathbb{F}_{q^{m}}^{k}$;
- Select random error vector $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω;
- $c=m G+e$.

Decryption:

- Set $m=\operatorname{Decode}(c)$ and return m;
- Return "fail" if decoding fails.

Structured Codes

Structured Codes

- Generalized Srivastava;
- Quasi-cyclic codes (QC);
- Quasi-dyadic codes (QD);
- Quasi-Dyadic + Goppa;
- Goppa codes;
- Others...

Structured Codes

Structured Codes
Quasi-Dyadic Codes (Misoczki, Barreto '09).

Structured Codes

Structured Codes
Quasi-Dyadic Codes (Misoczki, Barreto '09).
Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).

Structured Codes

Structured Codes
Quasi-Dyadic Codes (Misoczki, Barreto '09).
Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).
Use subfield subcode construction to encrypt in the subcode and decrypt using parent code.

Structured Codes

Structured Codes

Quasi-Dyadic Codes (Misoczki, Barreto '09).
Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).
Use subfield subcode construction to encrypt in the subcode and decrypt using parent code.

Problem: extra structure $=$ extra info for attacker.

Structured Codes

Structured Codes

Quasi-Dyadic Codes (Misoczki, Barreto '09).
Several families have QC/QD description
GRS, Goppa, Generalized Srivastava (Persichetti'11).
Use subfield subcode construction to encrypt in the subcode and decrypt using parent code.

Problem: extra structure $=$ extra info for attacker.

Critical algebraic attack (Faugère, Otmani, Perret, Tillich '10).

Generalized Srivastava Codes

Alternant codes with non-trivial intersection with Goppa codes.
Admit parity-check which is superposition of s blocks of size $t \times n$.

Generalized Srivastava Codes

Alternant codes with non-trivial intersection with Goppa codes. Admit parity-check which is superposition of s blocks of size $t \times n$. Each block H_{ℓ} has $i j$-th element $\frac{z_{j}}{\left(v_{j}-u_{\ell}\right)^{i}}$ (nonzero field elements).
If $t=1$ this is a Goppa code.
Can generate QD-GS codes using (modified) algorithm for QD Goppa.
Solution space defined by extension degree $m t$.
Similar performance, more flexibility, easier to resist FOPT
($m t>20$).

DAGS

Select hash functions G, H,K;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), \boldsymbol{d}=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), \boldsymbol{d}=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;
- Generate $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω from seed σ;

DAGS

Select hash functions G, H,K;

Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), d=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;
- Generate $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω from seed σ;
- Output (c, d) where $c=\mu G+e$ and $K=\mathrm{K}(m)$.

DAGS

Select hash functions G, H,K;

Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), \boldsymbol{d}=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;
- Generate $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω from seed σ;
- Output (c, d) where $c=\mu G+e$ and $K=K(m)$.

Decryption

- Set $\left(\mu^{\prime}, e^{\prime}\right)=\operatorname{Decode}(c)$ and parse $\mu^{\prime}=\left(\rho^{\prime} \| m^{\prime}\right)$;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), \boldsymbol{d}=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;
- Generate $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω from seed σ;
- Output (c, d) where $c=\mu G+e$ and $K=\mathrm{K}(m)$.

Decryption

- Set $\left(\mu^{\prime}, e^{\prime}\right)=\operatorname{Decode}(c)$ and parse $\mu^{\prime}=\left(\rho^{\prime} \| m^{\prime}\right)$;
- Recompute $\mathbf{G}\left(m^{\prime}\right), d=\mathbf{H}\left(m^{\prime}\right)$ and $e^{\prime \prime}$, then compare;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), \boldsymbol{d}=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;
- Generate $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω from seed σ;
- Output (c, d) where $c=\mu G+e$ and $K=\mathrm{K}(m)$.

Decryption

- Set $\left(\mu^{\prime}, e^{\prime}\right)=\operatorname{Decode}(c)$ and parse $\mu^{\prime}=\left(\rho^{\prime} \| m^{\prime}\right)$;
- Recompute $\mathbf{G}\left(m^{\prime}\right), d=\mathbf{H}\left(m^{\prime}\right)$ and $e^{\prime \prime}$, then compare;
- Return \perp if decoding fails or any check fails;

DAGS

Select hash functions G, H,K; Key Generation

- Generate a QD-GS code C;
- SK: description for C (in alternant form) over $\mathbb{F}_{q^{m}}$;
- PK: generator matrix G in systematic form for C over \mathbb{F}_{q}.

Encapsulation

- Choose random word $m \in \mathbb{F}_{q}^{k}$;
- Compute $(\rho \| \sigma)=\mathbf{G}(m), \boldsymbol{d}=\mathbf{H}(m)$ and set $\mu=(\rho \| m)$;
- Generate $e \in \mathbb{F}_{q^{m}}^{n}$ of weight ω from seed σ;
- Output (c, d) where $c=\mu G+e$ and $K=\mathrm{K}(m)$.

Decryption

- Set $\left(\mu^{\prime}, e^{\prime}\right)=\operatorname{Decode}(c)$ and parse $\mu^{\prime}=\left(\rho^{\prime} \| m^{\prime}\right)$;
- Recompute $\mathbf{G}\left(m^{\prime}\right), d=\mathbf{H}\left(m^{\prime}\right)$ and $e^{\prime \prime}$, then compare;
- Return \perp if decoding fails or any check fails;
- Else return $K=\mathrm{K}\left(m^{\prime}\right)$.

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hövelmanns, Kiltz '17).

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hövelmanns, Kiltz '17).
Leverage "randomized" IND-CPA McEliece variant for tighter security proof.

About DAGS

Uses McEliece and generic KEM paradigm (Hofheinz, Hövelmanns, Kiltz '17).
Leverage "randomized" IND-CPA McEliece variant for tighter security proof.
Efficient "Key Confirmation + Re-encryption" step.
Typical parameters:

q	m	n	k	s	t	Errors	PK Size (bytes)	SK Size (bytes)	Cipher text (bytes)
2^{6}	2	2112	704	2^{6}	11	352	11,616	6,336	1,616

Advantages: small keys and ciphertext. Disadvantages:
Conservative parameters that makes DAGS slow.
Code at: https://git.dags-project.org/dags/dags

About DAGS implementation

Key generation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}}$;

About DAGS implementation

Key generation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}}$;
- Additions are "cheap";
- Multiplications and inversions are costly; Originally with log and i -log tables
- Random generation of a polynomial in $\mathbb{F}_{2^{12}}$.

About DAGS implementation

Key generation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}}$;
- Additions are "cheap";
- Multiplications and inversions are costly; Originally with log and i -log tables
- Random generation of a polynomial in $\mathbb{F}_{2^{12}}$.

Encapsulation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}}$;
- Random generation of a polynomial in $\mathbb{F}_{2^{12}}$;
- Hash function "call".

About DAGS implementation

Key generation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}} ;$
- Additions are "cheap";
- Multiplications and inversions are costly; Originally with log and \mathbf{i}-log tables
- Random generation of a polynomial in $\mathbb{F}_{2^{12}}$.

Encapsulation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}}$;
- Random generation of a polynomial in $\mathbb{F}_{2^{12}}$;
- Hash function "call".

Decapsulation

- Operations in $\mathbb{F}_{2^{12}}$ and in $\mathbb{F}_{2^{6}}$;
- Random generation of a polynomial in $\mathbb{F}_{2^{12}}$;
- Hash function "call".

DAGS Description

Key generation
The key generation process uses the following fundamental equation

$$
\begin{equation*}
\frac{1}{h_{i \oplus j}}=\frac{1}{h_{i}}+\frac{1}{h_{j}}+\frac{1}{h_{0}} . \tag{1}
\end{equation*}
$$

To build the vector $\mathbf{h}=\left(h_{0}, \ldots, h_{n-1}\right)$ of elements of $\mathbb{F}_{q^{m}}$, which is known as signature of a dyadic matrix.

DAGS Description

Key generation

1 Generate dyadic signature \mathbf{h}. To do this:
i. Choose random non-zero distinct h_{0} and h_{j} for $j=2^{\prime}, I=0, \ldots,\left\lfloor\log q^{m}\right\rfloor$.
ii. Form the remaining elements using (1).
iii. Return a selection of blocks of dimension s up to length n.

2 Build the Cauchy support. To do this:
i. Choose a random offset $\omega \leftarrow_{\leftarrow}^{\mathfrak{s}} \mathbb{F}_{q^{m}}$.
ii. Set $u_{i}=1 / h_{i}+\omega$ and $v_{j}=1 / h_{j}+1 / h_{0}+\omega$ for $i=0, \ldots, s-1$ and $j=0, \ldots, n-1$.
iii. Set $\mathbf{u}=\left(u_{0}, \ldots, u_{s-1}\right)$ and $\mathbf{v}=\left(v_{0}, \ldots, v_{n-1}\right)$.

DAGS Description

Key generation

3 Form Cauchy matrix $\hat{H}_{1}=C(\mathbf{u}, \mathbf{v})$.
4 Build blocks $\hat{H}_{i}, i=2, \ldots t$, by raising each element of \hat{H}_{1} to the power of i.
5 Superimpose blocks to form matrix \hat{H}.
6 Choose random elements $z_{i} \stackrel{\lessgtr}{\leftarrow} \mathbb{F}_{q^{m}}$ such that $z_{\text {is }+j}=z_{\text {is }}$ for $i=0, \ldots, n_{0}-1, j=0, \ldots, s-1$.
7 Form $H=\hat{H} \cdot \operatorname{Diag}(z)$.
8 Transform H into alternant form: call this H^{\prime}.
9 Project H onto \mathbb{F}_{q} using the co-trace function: call this $H_{\text {base }}$.
10 Write $H_{\text {base }}$ in systematic form $\left(M \mid I_{n-k}\right)$.
11 The public key is the generator matrix $G=\left(I_{k} \mid M^{T}\right)$.
12 The private key is the alternant matrix H^{\prime}.

DAGS Description

Encapsulation

1. Choose $\mathbf{m} \stackrel{\S}{\leftarrow} \mathbb{F}_{q}^{k^{\prime}}$.
2. Compute $\mathbf{r}=\mathcal{G}(\mathbf{m})$ and $\mathbf{d}=\mathcal{H}(\mathbf{m})$.
3. Parse \mathbf{r} as $(\boldsymbol{\rho} \| \boldsymbol{\sigma})$ then set $\boldsymbol{\mu}=(\boldsymbol{\rho} \| \mathbf{m})$.
4. Generate error vector \mathbf{e} of length n and weight w from $\boldsymbol{\sigma}$.
5. Compute $\mathbf{c}=\boldsymbol{\mu} G+\mathbf{e}$.
6. Compute $\mathbf{k}=\mathcal{K}(\mathbf{m})$.
7. Output ciphertext (\mathbf{c}, \mathbf{d}); the encapsulated key is \mathbf{k}.

DAGS Description

Decapsulation

1. Input private key, i.e. parity-check matrix H^{\prime} in alternant form.
2. Use \boldsymbol{H}^{\prime} to decode \mathbf{c} and obtain codeword $\boldsymbol{\mu}^{\prime} G$ and error \mathbf{e}^{\prime}.
3. Output \perp if decoding fails or $\left(\mathrm{e}^{\prime}\right) \neq w$
4. Recover $\boldsymbol{\mu}^{\prime}$ and parse it as $\left(\boldsymbol{\rho}^{\prime} \| \mathbf{m}^{\prime}\right)$.
5. Compute $\mathbf{r}^{\prime}=\mathcal{G}\left(\mathbf{m}^{\prime}\right)$ and $\mathbf{d}^{\prime}=\mathcal{H}\left(\mathbf{m}^{\prime}\right)$.
6. Parse \mathbf{r}^{\prime} as $\left(\boldsymbol{\rho}^{\prime \prime} \| \sigma^{\prime}\right)$.
7. Generate error vector $\mathbf{e}^{\prime \prime}$ of length n and weight w from $\boldsymbol{\sigma}^{\prime}$.
8. If $\mathbf{e}^{\prime} \neq \mathbf{e}^{\prime \prime} \vee \rho^{\prime} \neq \rho^{\prime \prime} \vee \mathbf{d} \neq \mathbf{d}^{\prime}$ output \perp.
9. Else compute $\mathbf{k}=\mathcal{K}\left(\mathbf{m}^{\prime}\right)$.
10. The decapsulated key is \mathbf{k}.

Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
epersichetti@fau.edu

[^0]: ${ }^{1}$ Department of Mathematics and Computer Science Technische Universiteit Eindhoven gustavo@cryptme.in

