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Cryptoapocalypse

Algorithms for Quantum Computation:
Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
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Abstract

A computer is generaily considered 10 be a universal
computational device; i.e., it is believed able to simulate
any physical computational device with a cost in com-
putation time of at most a polynomial factor. It is not
clear whether this is still true when quantum mechanics
is taken into consideration. Several researchers, starting
with David Deutsch, have developed models for quantum

hanical comp and have i ] d their compu-
tational properties. This paper gives Las Vegas algorithms
Jor finding discrete logarithms and factoring integers on
a quantum computer that take a number of steps which is
polynomial in the input size, e.g., the number of digits of the
integer to be factored. These two problems are generally
considered hard on a classical computer and have been
used as the basis of several proposed cryptosystems. (We

[1, 2]. Although he did not ask whether quantum mechan-
ics conferred extra power to computation, he did show that
a Turing machine could be simulated by the reversible uni-
tary evolution of a quantum process, which is a necessary
prerequisite for q putation. Deutsch [9, 10] was
the first to give an explicit model of quantum computation.
He defined both Turing hines and
circuits and investigated some of their properties.
The next part of this paper discusses how quantum com-
putation relates to classical complexity classes. We will
thus first give a brief intuitive discussion of complexity
classes for those readers who do not have this background.
There are generally two resources which limit the ability
of computers to solve large problems: time and space (i.e.,
memory). The field of analysis of algorithms considers
the asymptotic demands that algorithms make for these
resources as a function of the problem size 'IheoreticaP




Cryptoapocalypse

A fast quantum mechanical algorithm for database search
Lov K. Grover
3C-404A, AT&T Bell Labs
600 Mountain Avenue
Murray Hill NJ 07974
lkg @mhcnet.att.com

Summary

An unsorted database contains N records, of which just
one satisfies a particular property. The problem is to
identify that one record. Any classical algorithm, deter-
ministic or probabilistic, will clearly take O (N) steps
since on the average it will have to examine a large frac-
tion of the N records. Quantum mechanical systems can
do several operations simultaneously due to their wave
like properties. This paper gives an| @ (/N) step quan-
tum mechanical algorithm for identifying that record. It
is within a constant factor of the fastest possible quan-
tum mechanical algorithm.

This paper applies quantum computing to a

dane problem in infi ion processing and pre-
sents an algorithm that is significantly faster than any
classical algorithm can be. The problem is this: there is
an unsorted database containing NV items out of which
just one item satisfies a given condition - that one item
has to be retrieved. Once an item is examined, it is pos-
sible to tell whether or not it satisfies the condition in
one step. However, there does not exist any sorting on
the database that would aid its selection. The most effi-
cient classical algorithm for this is to examine the items
in the database one by one. If an item satisfies the
required condition stop; if it does not, keep track of this
item so that it is not examined again. It is easily seen
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In other words..

T'WE INVENTED A QUANTUM
COMPUTER, CAPABLE OF
INTERACTING WITH MATTER
FROM OTHER UMIVERSES
TO SOLVE COMPLER
EQUATTONS.
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Introduction to Quantum Computing

How a quantum computer works?

» It performs computations based on probabilities of an object’s
state before it is measured:;
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Introduction to Quantum Computing

How a quantum computer works?

» It performs computations based on probabilities of an object’s
state before it is measured:;

> We can change the probabilities of a state;
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Quantum Computation - qubits

Qubit vs Classical bit
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Quantum Computation - qubits

Qubit vs Classical bit
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Measuring quantum state
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Measuring collapses the state.
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Quantum gates

Identity gate:
|a) E)

NOT gate:

|a) ANOT}- |1 - a)

CNOT

gate:

a) 4~ |a)
|b) & |a® b)

Toffoli

gate:

3) - |2

— |b)
b— |ab @ c)
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n-Qubit system

Definition Example 2-qubit system

2 _
[¥) € € such that |[[¢) || = 1, » 4 basis states:

10) ©10), |0) ©[1),[1) @]0),

W= 3 alx) 1) ® ).
x€{0,1}" » |t is common to use just:
where 0) [1).]10)
Z o] = 1.
x€{0,1}n
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Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);
Unitary means:

uut =utu =1
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Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);
Unitary means:

uut =utu =1

A unitary transformation taking basis states to basis states must be
a permutation.
if U|x)=|u)and Uly) = |u), then |x) = U~ |u) = |y).
Therefore quantum mechanics imposes the constraint that
classically it must be reversible computation.
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Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H*(x):
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Computing functions

Using classical computers

Example to compute H(H(H(H(x)))) = H*(x):

Time
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time 1:
time 2:
time 3:
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Computing functions

Using classical computers

Example to compute H(H(H(H(x)))) = H*(x):

Time

time O:
time 1:
time 2:
time 3:
time 4:

RO

X X X X X

2

~—~~

coooX

1
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Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H*(x):

Time RO R1 R2
time 0: X 0 0
time 1: X 0 H(x)
time 2: x 0 H?(x)
time 3: X 0 H3(x)
time 4: X HY(x)  H3(x)

Total: 5 Computations of H and only 3 registers.
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Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):
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Computing functions

Make it reversible with Bennett—Tompa's method
Example to compute H*(x):

Time RO R1 R2 R3 R4
time O: X 0 0 0 0
time 1: X 0 H(x) 0 0
time 2: X 0 H(x)  H?*(x) 0
time 3: X 0 H(x) H?(x) H3(x)
time 4: X H*(x)  H(x) H*x) H3(x)
time 5: X H*(x) H(x) H?(x) 0
time 6: X H*(x)  H(x) 0 0
time 7: X H*(x) 0 0 0

Total: 8 Computations of H and 5 registers.
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Grover's Algorithm

Grover's algorithm in a nutshell

[ |o> 71
n{ o) —H} ¢ g | - |og —} measure
l 0)— H]— —J

» Needs k = O(v/N) queries in database of size N = 2"
elements;

» G is the “Grover” step, and it consists of evaluating a search
function.
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Grover's Algorithm

Grover's algorithm in a nutshell

Given a function f : {0,1}* — {0, 1}, we can define Grover's
algorithm as:
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Grover's Algorithm

Grover's algorithm in a nutshell

Given a function f : {0,1}* — {0, 1}, we can define Grover's
algorithm as:

Grover(f):
1. Start with |¢g) = [17)
. Apply H®"
. Repeat O (\/27) times
Quantum evaluation of f with oracle Of
Amplification;
. Measure x = |¢) and return f(x) = 1.

oUlhWN

The function f can be a preimage search of a hash function or a
key search.
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Quantum AES

AES in quantum gates

» All the operations can only be build using quantum gates;
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Quantum AES

AES in quantum gates

» All the operations can only be build using quantum gates;
> It needs to be reversible;

» Lower depth and low amount of qubits.
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Quantum AES

AES in quantum gates

Round 1 Round 2 Round 10
k) —I—‘M} [KENT] —KEy T Ky,
|m) —& BS
10) ' MC | bs
) SR —{MC

0

1oy ] -

(a) AES-128 operation.

Figure: Complete AES-128. Figure from JNRV?

2Samuel Jaques, Michael Naehrig, Martin Roetteler and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In

EUROCRYPT 2020, 2020.
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Quantum AES

AES in quantum gates

Even small details can decrease number of operations.

3Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.

In PQCRYPTO 16. Springer, 2016.
18/35



Quantum AES

AES in quantum gates

Even small details can decrease number of operations.
For example: the SubByte function, looking only for the
multiplicative inverse. The authors in GLRS® compute as:

Oéil — O[254 — ((a . a2) i (a . a2)4 . (a . a2)16 . O464)2'

3Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.

In PQCRYPTO 16. Springer, 2016.
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Quantum AES

Reversible computation of o=t = a?®* proposed in GLRS

(*)- multiplication between two values occurs, (*)- squaring or
multi-squaring occurs, (* ") when an out-of-place squaring or
multi-squaring.

Qubits position | 71 g 15| 16...23 | 24...31 | 32...30
Step
0 o
T o 3
2% o o2 o3
37 a o « al
aF o o o o [l
5F o o o [l
6 o o ¥ al®
7F o o o o Pl
PR a (1/6 ﬂ48 (1/15
9 o o5 o [
0% o [ ot o5 o [l
i S o [l
2 a | o | o8 o [l
3F a | o o [l
% a | oF o o Pl
15 ~ a 4’\254 (1/3 012 015
16 * a %% n ol
17 o P o
18 o [ o o
19 * o [ a
20 o | o
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Reversible computation of o=t = a?®* proposed in GLRS

(*)- multiplication between two values occurs, (*)- squaring or
multi-squaring occurs, (* ") when an out-of-place squaring or
multi-squaring.

Qubits position | 71 g 15| 16...23 | 24...31 | 32...30
Step
0 o
T o 3
2% o o2 o3
37 a o « al
aF o o o o [l
5F o o o [l
6 o o ¥ al®
7F o o o o Pl
5" o o5 o o
9~ 054 0(6 04 0(15
0¥ o [ ot o5 o [l
i S o [l
2 a | o | o8 o [l
3F a | o o [l
% a | oF o o Pl
15 ~ a 4’\254 (1/3 012 (1/15
16 * a %% a ol
17 o P o
18 o [ o o
19 * a [ a
20 o | o

8 multiplications and 29 squarings.
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Quantum AES
1 254

Better way to compute a™* = «

(*)- multiplication between two values occurs, (*)- squaring or
multi-squaring occurs, (* ") when an out-of-place squaring or
multi-squaring.

Qubits position |, 71 g 15| 16...23 | 24...31 | 32...30
Step

0 o

i o o

2% o o2 o3

3" o o o o

~n a o al?

5% o ol® a o

6" o o o ol

7 a a® o

8% o o a i

9 o o o Tl

10 * a a0 o al® af
11 a a0 o al?® %%
2 o a® o o o>
13 * a a® o [
TR o o o o o5
57 o ol o3 ol o5
T6% o o o il
17 7" o o a of? P
18 o o a [
19 * o o [
20" o o>
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Quantum AES
1 254

Better way to compute a™* = «

(*)- multiplication between two values occurs, (*)- squaring or
multi-squaring occurs, (* ") when an out-of-place squaring or
multi-squaring.

Qubits position |, 71 g 15| 16...23 | 24...31 | 32...30
Step

0 o

i o o

2% o o2 o3

3" a o2 o o

~ a o al?

5% o ol o of

6" o o o ot

7 a a® o

8% o o o o5

9 o o o o7

0F o a® o i o
11 a a0 o al?® %%
2 o a® o o o>
13 * a a® o [
4 o o o ot o5
15 a (‘15 4’\3 012 ‘,\254
16* a o al? %%
17 a o o al? o7
18 o o a [
19 * o o [
20 o o>

7 multiplications and 19 squarings.
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Quantum AES
AES in quantum gates
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-
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Figure: Squaring in Fa[x]/x® +x* +x3 + x + 1
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AES in quantum gates
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Figure: Squaring in Fa[x]/x® + x* +x3 + x + 1

This circuit requires 12 CNOTS
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Quantum AES
AES in quantum gates
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Figure: Squaring in Fa[x]/x® +x* +x3 + x + 1

This circuit requires 12 CNOTS
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Figure: Improved Squaring in Fa[x]/x® + x* + x3 + x + 1.
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Quantum AES
AES in quantum gates
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Figure: Squaring in Fa[x]/x® + x* +x3 + x + 1

This circuit requires 12 CNOTS
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Figure: Improved Squaring in Fa[x]/x® + x* + x3 + x + 1.

This circuit requires 10 CNOTS
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Grover's algorithm for breaking AES

Quantum Resources

Table: Number of gates for running Grover's algorithm on AES-128

Cliff +CNOT | T gates

GLRS* 1.55 - 286 1.19 - 286
LPS® 1.46 - 282 1.47 - 281
JNRV® 1.13-2%2 1.32.278

“Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.

In PQCRYPTO 16. Springer, 2016.

®Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the
cost of implementing AES as a quantum circuit. Cryptology ePrint Archive,

Report 2019/854, 2019.

5Samuel Jaques, Michael Naehrig, Martin Roetteler and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In

EUROCRYPT 2020, 2020.
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Shor's algorithm
In summary Shor's algorithm has two parts:

» A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer;
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Shor's algorithm
In summary Shor's algorithm has two parts:

» A reduction of the factoring problem to the problem of
order-finding, which can be done on a classical computer;

> A quantum algorithm to solve the order-finding problem.
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Shor's algorithm

A toy example can be when we have N = 15. Let's see how Shor's
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)

2 ged(a,N) = ged(2,15) =1

3 Find the period of function f(x) = a* mod N, which satisfies
f(x+r) = f(x);

4 Get r = 4 through the circuit below;

5 ged(az + 1, N) = ged(5,15) = 3;

6 ged(az — 1, N) = gcd(3,15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.

Register 1

t qubits !
Register 2

L qubits
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Ressource Estimation

Break RSA (Integer Factoring)

From Gidney & Ekera(2019)7 uses “3n+ 0.002n/g(n) logical qubits,
0.3n 4 0.0005n3/g(n) Toffolis, and 500n? + n?/g(n) measurement
depth to factor n-bit RSA integers”

RSA Bits | Qubits | Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

"Craig Gidney and Martin Ekera. How to factor 2048 bit RSA integers in 8

hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.

https://arxiv.org/abs/1905.09749
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Introduction to Binary ECC

Basic overview

> Binary elliptic curves are elliptic curves defined over a binary
field Fan;
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Introduction to Binary ECC

Basic overview
> Binary elliptic curves are elliptic curves defined over a binary
field Fan;
» We use polynomial representation and the operations are in F»
since Fon = Fs[z]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

» All computations are done mod m(z).
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Introduction to Binary ECC

Basic overview of operations

I
|
h 4 ¥

1
!
¥

GF add/sub

GF mul

GF div/inv
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Introduction to Binary ECC

Hardness of ECC

Public Parameters: Point P € E,
Alice Bob

a+s$F, B+s$F,
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Hardness of ECC
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Introduction to Binary ECC
Hardness of ECC

Public Parameters: Point P € E,

Alice Bob
a ST, B+sF,
Computes: Computes:
P, =aP Ps =3P
Pa
Ps
Computes: Computes:
Paﬁ = Ong Pa,@ = BPa

Alice and Bob have the shared point P,5 = [a - 5]P
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Shor's circuit for Binary Elliptic Curves

» Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat's little theorem);

8lggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information

& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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Shor's circuit for Binary Elliptic Curves

» Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat's little theorem);

> We use for multiplication Karatsuba from Iggy’s paper?;
» The GCD-based inversion performed better in number of
qubits and gates.

» Implementation of quantum Point addition and Point
“doubling”;

» Present the a quantum version of “window” addition;

» Q# implementation of Karatsuba and other functions;

» All the details will be present at CHES 2021.

8lggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information

& Computation, pages 721-735, 2020.https://arxiv.org/abs/1910.02849.
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Break Binary ECC (DLP)

From Banegas, Bernstein, van Hoof and Lange(2021)9, we require
the following amount of ressources:

Single step Total
n | qubits | TOF gates CNOT gates depth upper bound TOF gates
163 | 1,157 893,585 827,379 1,262,035 293,095,880
233 | 1,647 | 1,669,299 1,614,947 2,405,889 781,231,932
283 | 1,998 | 2,427,369 2,358,734 3,503,510 1,378,745,592
571 | 4,015 | 8,987,401 9,080,190 13,237,682 10,281,586,744
9Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum

cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Break Binary ECC (DLP)

From Banegas, Bernstein, van Hoof and Lange(2021)9, we require
the following amount of ressources:

Single step Total
n | qubits | TOF gates CNOT gates depth upper bound TOF gates
163 | 1,157 | 893,585 827,379 1,262,035 293,095,880
233 | 1,647 | 1,669,299 1,614,947 2,405,889 781,231,932
283 | 1,998 | 2,427,369 2,358,734 3,503,510 1,378,745,592
571 | 4,015 | 8,987,401 9,080,190 13,237,682 10,281,586,744

In fact, 7n+ |log(n)] + 9 qubits,
48n3 + 8n'°8(3)+1 1 35212 log(n) 4 5120 + O(n'°8(3)) Toffoli gates
and O(n®) CNOT gates.

9Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum
cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Questions

Thank you for your attention.
Questions?
gustavo@cryptme.in
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