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In other words..
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Introduction to Quantum Computing

How a quantum computer works?
I It performs computations based on probabilities of an object’s

state before it is measured;

I We can change the probabilities of a state;
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Quantum Computation - qubits

Qubit vs Classical bit

|0〉 =
(
1
0

)
|1〉 =

(
0
1

)
α |0〉+ β |1〉 ,

|α|2 + |β|2 = 1

.
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Measuring quantum state

Measuring collapses the state.
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Quantum gates

Identity gate:
|a〉 I |a〉

NOT gate:
|a〉 NOT |1− a〉

CNOT gate:
|a〉
|b〉

|a〉
|a⊕ b〉

Toffoli gate:
|a〉
|b〉
|c〉

|a〉
|b〉
|ab ⊕ c〉

Hadamard Gate:

H = 1√
2

(
1 1
1 −1

)
|b〉 H

(|0〉+(−1)b|1〉)√
2

|b〉 H H |b〉
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n-Qubit system

Definition
|ψ〉 ∈ C2 such that || |ψ〉 || = 1,

|ψ〉 =
∑

x∈{0,1}n
αx |x〉

where ∑
x∈{0,1}n

|αx |2 = 1.

Example 2-qubit system
I 4 basis states:
|0〉⊗ |0〉, |0〉⊗ |1〉,|1〉⊗ |0〉,
|1〉 ⊗ |1〉.

I It is common to use just:
|0〉 |1〉,|10〉
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Quantum computation and reversibility

Reversibility

Quantum evolution is unitary (or any operation that changes the
state needs to be unitary);

Unitary means:

UU† = U†U = I

A unitary transformation taking basis states to basis states must be
a permutation.

if U |x〉 = |u〉 and U |y〉 = |u〉, then |x〉 = U−1 |u〉 = |y〉.
Therefore quantum mechanics imposes the constraint that

classically it must be reversible computation.
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Computing functions

Using classical computers
Example to compute H(H(H(H(x)))) = H4(x):

Time R0 R1 R2
time 0: x 0 0
time 1: x 0 H(x)
time 2: x 0 H2(x)
time 3: x 0 H3(x)
time 4: x H4(x) H3(x)

Total: 5 Computations of H and only 3 registers.
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Computing functions

Make it reversible with Bennett–Tompa’s method
Example to compute H4(x):

Time R0 R1 R2 R3 R4
time 0: x 0 0 0 0
time 1: x 0 H(x) 0 0
time 2: x 0 H(x) H2(x) 0
time 3: x 0 H(x) H2(x) H3(x)
time 4: x H4(x) H(x) H2(x) H3(x)
time 5: x H4(x) H(x) H2(x) 0
time 6: x H4(x) H(x) 0 0
time 7: x H4(x) 0 0 0

Total: 8 Computations of H and 5 registers.
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Grover’s Algorithm

Grover’s algorithm in a nutshell

I Needs k = O(
√
N) queries in database of size N = 2n

elements;
I G is the “Grover” step, and it consists of evaluating a search

function.
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Grover’s Algorithm

Grover’s algorithm in a nutshell
Given a function f : {0, 1}∗ → {0, 1}, we can define Grover’s
algorithm as:

Grover(f ):
1. Start with |φ0〉 = |1n〉
2. Apply H⊗n

3. Repeat O
(√

2n
)
times

4. Quantum evaluation of f with oracle Of

5. Amplification;
6. Measure x = |φ〉 and return f (x) = 1.

The function f can be a preimage search of a hash function or a
key search.
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Quantum AES

AES in quantum gates
I All the operations can only be build using quantum gates;

I It needs to be reversible;
I Lower depth and low amount of qubits.
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Quantum AES

AES in quantum gates

Figure: Complete AES-128. Figure from JNRV2

2Samuel Jaques, Michael Naehrig, Martin Roetteler and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In
EUROCRYPT 2020, 2020.
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Quantum AES

AES in quantum gates

Even small details can decrease number of operations.

For example: the SubByte function, looking only for the
multiplicative inverse. The authors in GLRS3 compute as:

α−1 = α254 = ((α · α2) · (α · α2)4 · (α · α2)16 · α64)2.

3Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.
In PQCRYPTO 16. Springer, 2016.
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Quantum AES
Reversible computation of α−1 = α254 proposed in GLRS
(*)- multiplication between two values occurs, (^)- squaring or
multi-squaring occurs, (^^) when an out-of-place squaring or
multi-squaring.

Step
Qubits position

0 . . . 7 8 . . . 15 16 . . . 23 24 . . . 31 32 . . . 39

0 α

1 ^^ α α2

2 * α α2 α3

3 ^^ α α2 α3 α12

4 * α α2 α3 α12 α15

5 * α α2 α12 α15

6 ^ α α2 α48 α15

7 * α α2 α63 α48 α15

8 ^^ α α63 α48 α15

9 ^ α64 α63 α48 α15

10 * α64 α127 α63 α48 α15

11 ^ α64 α254 α63 α48 α15

12 ^ α α254 α63 α48 α15

13 * α α254 α48 α15

14 ^^ α α254 α3 α48 α15

15 ^ α α254 α3 α12 α15

16 * α α254 α3 α12

17 ^^ α α254 α3

18 ^^ α α254 α3 α2

19 * α α254 α2

20 ^^ α α254

8 multiplications and 29 squarings.

19 / 35



Quantum AES
Reversible computation of α−1 = α254 proposed in GLRS
(*)- multiplication between two values occurs, (^)- squaring or
multi-squaring occurs, (^^) when an out-of-place squaring or
multi-squaring.

Step
Qubits position

0 . . . 7 8 . . . 15 16 . . . 23 24 . . . 31 32 . . . 39

0 α

1 ^^ α α2

2 * α α2 α3

3 ^^ α α2 α3 α12

4 * α α2 α3 α12 α15

5 * α α2 α12 α15

6 ^ α α2 α48 α15

7 * α α2 α63 α48 α15

8 ^^ α α63 α48 α15

9 ^ α64 α63 α48 α15

10 * α64 α127 α63 α48 α15

11 ^ α64 α254 α63 α48 α15

12 ^ α α254 α63 α48 α15

13 * α α254 α48 α15

14 ^^ α α254 α3 α48 α15

15 ^ α α254 α3 α12 α15

16 * α α254 α3 α12

17 ^^ α α254 α3

18 ^^ α α254 α3 α2

19 * α α254 α2

20 ^^ α α254

8 multiplications and 29 squarings.
19 / 35



Quantum AES
Better way to compute α−1 = α254

(*)- multiplication between two values occurs, (^)- squaring or
multi-squaring occurs, (^^) when an out-of-place squaring or
multi-squaring.

Step
Qubits position

0 . . . 7 8 . . . 15 16 . . . 23 24 . . . 31 32 . . . 39

0 α

1 ^^ α α2

2 * α α2 α3

3 ^^ α α2 α3 α12

4 ^^ α α3 α12

5 * α α15 α3 α12

6 ^ α α60 α3 α12

7 ^^ α α60 α3

8 * α α60 α3 α63

9 ^ α α60 α3 α126

10 * α α60 α3 α126 α127

11 ^ α α60 α3 α126 α254

12 ^ α α60 α3 α63 α254

13 * α α60 α3 α254

14 ^^ α α60 α3 α12 α254
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Quantum AES
AES in quantum gates

Figure: Squaring in F2[x ]/x
8 + x4 + x3 + x + 1

This circuit requires 12 CNOTS

Figure: Improved Squaring in F2[x ]/x
8 + x4 + x3 + x + 1.

This circuit requires 10 CNOTS
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Grover’s algorithm for breaking AES

Quantum Resources

Table: Number of gates for running Grover’s algorithm on AES-128

Cliff +CNOT T gates
GLRS4 1.55 · 286 1.19 · 286

LPS5 1.46 · 282 1.47 · 281

JNRV6 1.13 · 282 1.32 · 278

4Markus Grassl, Brandon Langenberg, Martin Roetteler, and Rainer
Steinwandt. Applying Grovers algorithm to AES: quantum resource estimates.
In PQCRYPTO 16. Springer, 2016.

5Brandon Langenberg, Hai Pham, and Rainer Steinwandt. Reducing the
cost of implementing AES as a quantum circuit. Cryptology ePrint Archive,
Report 2019/854, 2019.

6Samuel Jaques, Michael Naehrig, Martin Roetteler and Fernando Virdia.
Implementing Grover oracles for quantum key search on AES and LowMC. In
EUROCRYPT 2020, 2020.
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Shor’s algorithm
In summary Shor’s algorithm has two parts:
I A reduction of the factoring problem to the problem of

order-finding, which can be done on a classical computer;

I A quantum algorithm to solve the order-finding problem.
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Shor’s algorithm
A toy example can be when we have N = 15. Let’s see how Shor’s
algorithm works:

1 Select an arbitrary number, such as a = 2 (< 15)
2 gcd(a,N) = gcd(2, 15) = 1
3 Find the period of function f (x) = ax mod N, which satisfies
f (x + r) = f (x);

4 Get r = 4 through the circuit below;
5 gcd(a

r
2 + 1,N) = gcd(5, 15) = 3;

6 gcd(a
r
2 − 1,N) = gcd(3, 15) = 5;

7 For N = 15, the two decomposed prime numbers are 3 and 5.
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Ressource Estimation

Break RSA (Integer Factoring)
From Gidney & Ekerå(2019)7 uses “3n+ 0.002nlg(n) logical qubits,
0.3n3 + 0.0005n3lg(n) Toffolis, and 500n2 + n2lg(n) measurement
depth to factor n-bit RSA integers”

RSA Bits Qubits Toffoli + T Gates (billions)
1024 3092 0.4
2048 6189 2.7
3072 9287 9.9

7Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits. arXiv preprint quant-ph/1904.09749, 2019.
https://arxiv.org/abs/1905.09749
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Introduction to Binary ECC

Basic overview
I Binary elliptic curves are elliptic curves defined over a binary

field F2n ;

I We use polynomial representation and the operations are in F2
since F2n ∼= F2[z ]/(m(z)), where m(z) is an irreducible
polynomial of degree n;

I All computations are done mod m(z).
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Introduction to Binary ECC
Basic overview of operations
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Introduction to Binary ECC

Hardness of ECC

Public Parameters: Point P ∈ Ep

Alice Bob

α←$Fp β←$Fp
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Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);

I We use for multiplication Karatsuba from Iggy’s paper8;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;
I Q# implementation of Karatsuba and other functions;
I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper8;

I The GCD-based inversion performed better in number of
qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;
I Q# implementation of Karatsuba and other functions;
I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper8;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;
I Q# implementation of Karatsuba and other functions;
I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper8;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;
I Q# implementation of Karatsuba and other functions;
I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper8;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;

I Q# implementation of Karatsuba and other functions;
I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper8;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;
I Q# implementation of Karatsuba and other functions;

I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Shor’s circuit for Binary Elliptic Curves

I Implementation of a quantum circuit for the inversion using
GCD and FLT (Fermat’s little theorem);
I We use for multiplication Karatsuba from Iggy’s paper8;
I The GCD-based inversion performed better in number of

qubits and gates.

I Implementation of quantum Point addition and Point
“doubling”;

I Present the a quantum version of “window” addition;
I Q# implementation of Karatsuba and other functions;
I All the details will be present at CHES 2021.

8Iggy van Hoof. Space-efficient quantum multiplication of polynomials for
binary finite fields with sub-quadratic Toffoli gate count.Quantum Information
& Computation, pages 721–735, 2020.https://arxiv.org/abs/1910.02849.

32 / 35



Break Binary ECC (DLP)
From Banegas, Bernstein, van Hoof and Lange(2021)9, we require
the following amount of ressources:

Single step Total
n qubits TOF gates CNOT gates depth upper bound TOF gates
163 1,157 893,585 827,379 1,262,035 293,095,880
233 1,647 1,669,299 1,614,947 2,405,889 781,231,932
283 1,998 2,427,369 2,358,734 3,503,510 1,378,745,592
571 4,015 8,987,401 9,080,190 13,237,682 10,281,586,744

In fact, 7n + blog(n)c+ 9 qubits,
48n3 + 8nlog(3)+1 + 352n2 log(n) + 512n2 +O(nlog(3)) Toffoli gates
and O(n3) CNOT gates.

9Banegas, G., Bernstein, D. J., van Hoof, I., Lange, T. Concrete quantum
cryptanalysis of binary elliptic curves. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021(1)
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Questions

Thank you for your attention.
Questions?

gustavo@cryptme.in
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